
Formally Verified Compositional Algorithms for Factored
Transition Systems

Mohammad Ahmad Abdulaziz Ali Mansour

A thesis submitted for the degree of
Doctor of Philosophy of

The Australian National University

June 2018

c©Mohammad Ahmad Abdulaziz Ali Mansour 2018
All Rights Reserved

Declaration

Except where otherwise indicated, this thesis is my own original work.

Mohammad Ahmad Abdulaziz Ali Mansour
27 June 2018

iii

iv

Acknowledgement

Firstly, I would like to thank god who blessed me with the health, will, and ability to do the work
in this thesis.

Secondly, I would like to thank Data61 (formerly NICTA) and the Australian National Uni-
versity for the PhD scholarship as well as the multiple travel grants, without which I would have
not been able to conduct my research.

Thirdly, I would like to thank my supervisors, Dr. Charles Gretton and Dr. Michael Norrish,
who were mentors, as well as friends to me. Our meetings and style of interaction were intellectu-
ally very stimulating and enjoyable, and in addition to their rich technical content, our discussions
spanned different topics like politics, history, and culture. Dr. Michael Norrish introduced me to
the basics of interactive theorem proving and spent countless hours with me in meetings helping
me through the different hurdles I faced during my research. Also, without his encouragement
and leveraging of his connections, it would have not been possible for me to proceed with my
internships. Dr. Charles Gretton’s help and guidance made it much easier to get habituated to
the literature and the different concepts of artificial intelligence planning. I would also like to
thank him for his relentless effort in reading and editing all the drafts I wrote in the course of my
PhD studies. I would also like to thank my advisor Prof. Sylvie Thiébaux who helped gauge my
bearings research-wise and career-wise, at many points during my PhD program.

In addition to my supervisors, I would like thank different researchers with whom I had very
useful interactions related to the work in this thesis. I would like to thank Prof. Brendan McKay
who helped me understand many concepts in group theory and graph automorhpism, and formulate
and prove theorems that are crucial for significant parts of this thesis. I would also like to thank Dr.
Alban Grastien for our many engaging discussions and for his very useful feedback on many parts
of my research, as well as for reading many drafts that I wrote through my research. I would also
like to thank Dr. Patrik Haslum for his useful feedback and suggestions for my research and on
some of my drafts, and for being available to answer many of my questions on the fundamentals
and practicalities of AI planning. I would like to thank Prof. Daniel Jackson for his suggestion of
the hotel key protocol as an example to try the upper-bounding algorithms on. I would also like to
thank Dr. Miquel Ramírez for reading one of the drafts I wrote.

I would also like to thank the researchers who hosted me during my different internships
and research visits. Firstly I would like to thank Prof. Lawrence Paulson for hosting me in the
University of Cambridge Computer Laboratory, for his patience and generosity with his time and
effort, and for our consequent fruitful and joyful collaboration. Secondly, I would like to thank Dr.
Bruno Dutertre, Dr. Dejan Jovanovic, and Dr. Natrajan Shankar for hosting me in the Computer
Science Laboratory in SRI International and for the very helpful discussions I had with them.
From the Computer Science and Artificial Intelligence Laboratory in Massachusetts Institute of
Technology, I would like to thank Prof. Brian Williams and Dr. David Wang who hosted me
during my visit there.

Last, but not least, I would like to thank my family and my wife for their unlimited help
and support in general, and escpecially during my PhD program. I would also like to thank my
comrade PhD candidates: Josh, Jan, Fazlul, Karsten, Mazen, and Zuhair, for the many chats we
had, technical or otherwise.

v

vi Acknowledgement

Abstract

Artificial Intelligence (AI) planning and model checking are two disciplines that found wide prac-
tical applications. It is often the case that a problem in those two fields concerns a transition
system whose behaviour can be encoded in a digraph that models the system’s state space. How-
ever, due to the very large size of state spaces of realistic systems, they are compactly represented
as propositionally factored transition systems. These representations have the advantage of being
exponentially smaller than the state space of the represented system.

Many problems in AI planning and model checking involve questions about state spaces,
which correspond to graph theoretic questions on digraphs modelling the state spaces. How-
ever, existing techniques to answer those graph theoretic questions effectively require, in the worst
case, constructing the digraph that models the state space, by expanding the propositionally fac-
tored representation of the system. This is not practical, if not impossible, in many cases because
of the state space size compared to the factored representation.

One common approach that is used to avoid constructing the state space is the compositional
approach, where only smaller abstractions of the system at hand are processed and the given
problem (e.g. reachability) is solved for them. Then, a solution for the problem on the concrete
system is derived from the solutions of the problem on the abstract systems. The motivation of
this approach is that, in the worst case, one need only construct the state spaces of the abstractions
which can be exponentially smaller than the state space of the concrete system.

We study the application of the compositional approach to two fundamental problems on tran-
sition systems: upper-bounding the topological properties (e.g. the largest distance between any
two states, i.e. the diameter) of the state space, and computing reachability between states. We
provide new compositional algorithms to solve both problems by exploiting different structures of
the given system. In addition to the use of an existing abstraction (usually referred to as projection)
based on removing state space variables, we develop two new abstractions for use within our com-
positional algorithms. One of the new abstractions is also based on state variables, while the other
is based on assignments to state variables. We theoretically and experimentally show that our new
compositional algorithms improve the state-of-the-art in solving both problems, upper-bounding
state space topological parameters and reachability. We designed the algorithms as well as for-
mally verified them with the aid of an interactive theorem prover. This is the first application that
we are aware of, for such a theorem prover based methodology to the design of new algorithms in
either AI planning or model checking.

vii

viii Abstract

Contents

Declaration iii

Acknowledgement v

Abstract vii

1 Introduction 1
1.1 Contributions . 3

1.1.1 Publications . 4
1.2 Thesis Structure . 5

2 Basic Concepts and Notations 7

3 Compositional Upper-Bounding of Topological Properties 9
3.1 Related Work . 9
3.2 Results . 11
3.3 Compositional Upper-Bounding: Negative Results 12

3.3.1 Projection and Variable Dependency . 13
3.3.2 Diameter Cannot be Compositionally Upper-Bounded 15
3.3.3 Recurrence Diameter Cannot be Compositionally Bounded 17
3.3.4 Discussion . 19

3.4 The Traversal Diameter . 20
3.4.1 Tightness of the Traversal Diameter . 21
3.4.2 Computing the Traversal Diameter . 22

3.5 Using Structural Knowledge for Better Bounds: Acyclic Dependency 23
3.5.1 Upper-Bounding the Diameter using Abstractions’ Recurrence Diameters 24

3.6 The Sublist Diameter . 29
3.6.1 Compositionally Bounding the Sublist Diameter Under Acyclic Dependency 29
3.6.2 The Sublist Diameter as a Compositional Upper Bound on the Diameter . 30

3.7 Exploiting State Space Acyclicity . 32
3.7.1 Hotel Key Protocol . 33
3.7.2 State Space Acyclicity Compositional Bounding Constructs 33

3.8 A Practical Algorithm for Upper-Bounding . 35
3.8.1 Hybrid Algorithm . 36

3.9 Empirical Evaluations . 37
3.9.1 Quality of HYB Bounds . 38
3.9.2 Comparison of HYB and Nsum . 38
3.9.3 Planning with HYB . 39

3.10 Conclusion and Open Questions . 39

ix

x Contents

4 Compositional Computation of Reachability in the Presence of Repetitive Symmetry 49
4.1 Related Work . 50
4.2 Results . 51
4.3 Planning Problems and Additional Notation . 53
4.4 Computing Problem Symmetries . 54
4.5 Computing the Set of Instantiations . 55

4.5.1 Finding Instantiations: Practice . 56
4.5.2 Finding Instantiations: Theory . 57

4.6 Concrete Plan from Quotient Plan . 59
4.7 Experimental Results . 61
4.8 Conclusions and Future Work . 63

5 Formalisation 65
5.1 Related Work . 67
5.2 Factored Transition Systems in HOL4 . 67

5.2.1 Topological Properties . 68
5.2.2 Abstraction . 71

5.3 Formalising Compositional Upper-Bounding Algorithms 72
5.3.1 Compositional Bounding in the General Case 72
5.3.2 Compositional Bounds in the Presence of Acyclicity 73

5.4 Formalising the Compositional Reachability Algorithm 81
5.4.1 Formalising Soundness of Sub-solution Concatenation (Theorem 17) . . 82
5.4.2 Formalising Instantiation . 85
5.4.3 Formalising Theorem 18 and the Validity of Goal Augmentation 87

5.5 Concluding Remarks . 88

Bibliography 91

Chapter 1

Introduction

The state spaces of problems in fields such as model checking and Artificial Intelligence (AI)
planning can be modelled as digraphs, where vertices and edges represent states and transitions,
respectively. The digraph modelling the state space is represented as a propositionally factored
transition system in languages such as STRIPS by Fikes and Nilsson (1971) and SMV by McMil-
lan (1993). This representation has the advantage of being exponentially smaller than an explicit
representation of the digraph. That compactness is necessary due to the enormous size of state
spaces of realistic systems.

Two well studied problems on digraphs are upper-bounding the digraph’s topological prop-
erties (e.g. the diameter) and testing reachability between vertices. Solving those two problems
for digraphs modelling state spaces is crucial for solving problems in AI planning and model
checking. However, mainstream algorithms to solve those two problems either assume the di-
graph is available in an explicit form (i.e. not in a factored form) or they effectively expand the
factored representation and construct the digraph modelling its state space. This is impossible
in many practical cases, where factored representations of state spaces with 21000 states are not
uncommon. That issue is referred to as the state space explosion problem (Clarke et al. (2001)).
Furthermore, assuming that constructing the digraph was possible, worst-case run-times of state-
of-the-art algorithms to solve those problems are worse than linear in the size of the digraph, which
is infeasible.

Different techniques were invented to mitigate the state space explosion. Computing reacha-
bility is one notable problem for which many techniques were developed to circumvent the state
space explosion. For example, different modifications to path search algorithms were developed.
Those techniques can exponentially reduce the path search run-time in many practical examples.
Although those methods were developed multiple decades ago, they are still active research topics.
Examples of such methods are symmetry breaking (Emerson and Sistla, 1996; Clarke et al., 1996,
1998; Fox and Long, 1999, 2002), partial order reduction (Godefroid, 1990; Gerth et al., 1995;
Alur et al., 1997; Chen and Yao, 2009; Xu et al., 2011), and heuristic search (McDermott, 1996;
Blum and Furst, 1997; Bonet and Geffner, 2001; Hoffmann and Nebel, 2001). A central drawback
with many of these techniques is that they are tailored to specific solution algorithms. For instance,
many heuristic search techniques are designed for explicit state space search, but it is not obvious
how to combine them with SAT-based planning methods to get a significant performance boost.

Another more general approach to mitigate state space explosion is the compositional ap-
proach: a solution to the original problem instance is found or approximated via composing solu-
tions to one or many (possibly significantly) smaller derived sub-problems, or “abstractions” (e.g.
Clarke et al. (1994); Knoblock (1994); Williams and Nayak (1997); Berezin et al. (1998); Amir
and Engelhardt (2003); Kroening (2006); Case et al. (2009); Filiot et al. (2011)). An advantage of
this approach is that it is not specific to a certain solution method, i.e. it does not matter how the
abstractions’ solutions were computed. In this thesis we study the application of this approach to

1

2 Introduction

solve diameter upper bounding and reachability. In particular, we consider computing the topolog-
ical property (resp. solving the reachability problem) for a set of minors of the digraph modelling
the state space of the system under consideration. Minors are digraphs derived by vertex contrac-
tions as well as edge and vertex deletions. These minors of the state space model the state spaces of
abstractions of the given system. Minors’ topological properties (resp. reachability witness paths)
are then composed into an upper bound on the topological property (resp. a witness reachability
path) for the digraph modelling the given system’s state space.

In many practical cases the compositional approach is one of the few known feasible ap-
proaches to solve problems on the state space of the given factored system. This is because it
avoids constructing and performing computations on the large digraph modelling the state space,
and only constructs and processes (significantly smaller) minors of it. On the other hand, a draw-
back of the compositional approach is that it is not always the case that it is usefully applicable to
the given transition system. Nonetheless, we identify structures whose presence in the transition
system make it possible to compositionally solve the problems. These structures are acyclicity (in
“state variable dependencies” and the state space) for compositionally upper-bounding the diame-
ter, and symmetry (between state variables) for compositionally solving the reachability problem.
We show that those structures are abundant in systems coming from standard AI planning bench-
marks and standard model checking problems. We thus show that our algorithms improve the
state-of-the-art in both scenarios of AI planning: proving plan existence and plan non-existence.

In addition to developing new compositional algorithms, we formally verify their validity in
the interactive theorem prover HOL4 by Slind and Norrish (2008). To do that we develop a rich
formal proof library about transition systems. Many theorems in our formalisation apply to infinite
state transition systems and accordingly this library can be used for application well beyond the
algorithms that we verify in this work, like algorithms for hybrid systems, for instance. A problem
that we faced while developing these compositional algorithms is the sheer difficulty of manually
verifying their properties and soundness. Using the proof assistant HOL4, we discovered many
mistakes in our work at different stages and even mistakes in the literature, in a process we would
describe as “computer-aided algorithm design”.

In addition to aiding us develop our algorithms and giving us extra assurance about our results,
we believe that the formalisation of AI algorithms in general is of great utility, if those algorithms
are to be deployed in safety critical applications or in autonomous exploration of space. There
is a twofold justification for requiring formal correctness guarantees. First, if the output of the
algorithm is hard to test—e.g. that a plan does not exist—then we require correctness to assure the
sound operation of the system at hand. For example, if a chemical plant can be rendered safe in the
event of a potentially dangerous subsystem failure, the planner must be able to identify that course
of action which averts a catastrophic failure. Secondly, if the output is computationally easy to
test—e.g. sound operation is easily guaranteed—it remains a potentially dangerous waste of time
and resources to have a computationally expensive planning subsystem that produces unusable
plans. This is especially the case when such resources are scarce and one cannot afford to invest
in an algorithm without guarantees, like with autonomous exploration of space.

Propositionally Factored Transition Systems In this representation, every state (i.e. vertex) is
defined as an assignment to a set of Boolean state variables. For example, consider a hotel that has
a number of rooms, each of which opens with one of a set of keys at a given time. In this case, the
set of state variables assigned indicating whether a certain room opens with a certain key at the
state.

In the factored representation multiple transitions (i.e. edges) are factored into actions that
identify which states are connected to which states. For instance, consider an action that, given

§1.1 Contributions 3

the variable indicating that a certain room opens with a key i is true (its precondition), negates
that variable and sets another one indicating that the room currently opens with a different key j
(its effect). This action factors all the transitions that go from states where the room opens with
key i to states where it opens with key j. In addition to the compactness of this representation,
without it, we would not be able to pursue the proofs of our results or define concepts like the
sublist diameter (see Section 3.6), as naturally.

Minors and Abstractions Compositional approaches involve solving given problems for state
spaces of “abstractions” of the given system, which are minors of the digraph modelling the given
system’s state space. Abstractions that we consider are projection over a set of state variables (see
Section 3.3.1), snapshotting over an assignment of a set of state variables (see Section 3.6.2), and
quotienting (see Section 4.5) over a partition of state variables. In projection, state variables are
removed from the factored system. This is equivalent to repetitive vertex contraction operations
in the state space. In snapshotting, actions that violate the given assignment (i.e. if it holds, they
either cannot execute or change it in their effect) are removed from the factored system. This
is equivalent to consecutive edge and vertex deletions in the state space. In quotienting, given a
partition of the state variables, all members of an equivalence class are removed, except for one
representative from each equivalence class. This is also equivalent to consecutive edge and vertex
deletions in the state space.

1.1 Contributions

We start by discussing our results on upper-bounding topological properties of digraphs modelling
state spaces. Our first two results are negative results concerning compositional bounding of two
prominent topological properties: the diameter (the longest distance between any two states) and
the recurrence diameter (the length of the longest simple path). We show that any method that
compositionally bounds the (recurrence) diameter using only “state variable dependency” analy-
sis is unsound. We do so by demonstrating that the (recurrence) diameters of minors modelling
projections’ state spaces cannot be composed, solely based on inter-projection variable dependen-
cies, to upper-bound the (recurrence) diameter of the state space of the system. In other words,
a compositional algorithm needs more “information” than just variable dependencies to composi-
tionally upper-bound the (recurrence) diameter.

We define two new topological properties that can be compositionally bounded, which are
themselves upper bounds on the diameter and/or the recurrence diameter. Thus, they can be used
to compositionally upper-bound the diameter and/or the recurrence diameter. The first property,
the traversal diameter, can always be compositionally bounded, regardless of the structure of the
transition system. However, it can be exponentially looser than the diameter and the recurrence
diameter. The second property, the sublist diameter, can be compositionally bounded in systems
that can be partitioned into sub-systems with acyclic dependency relations among them. It is an
upper bound on the diameter and a lower bound on the recurrence diameter. We prove that the
compositional bounds that we provide for both properties cannot be improved.

In deriving the above results, we also provide theoretical constructs that we believe are inter-
esting themselves. The first is a novel proof artifact, the stitching function (H), which can be used
to merge paths from different projections of a transition system into a path in the concrete system.
We also provide digraph constructions that we refer to as “flowers” and “inverted flowers”. The
main feature of the flower constructions is that they are digraphs that can have arbitrarily many
vertices added to them, without changing their diameters, sublist diameters, or longest paths.

4 Introduction

We provide a new algorithm to compositionally upper-bound the diameter by using the pro-
jections’ recurrence diameters. We prove that bounds computed by this algorithm cannot be im-
proved. We also experimentally show that this algorithm significantly outperforms previous al-
gorithms in terms of tightness of computed bounds. We combine this algorithm with a novel
approach to exploiting acyclicity in the state space to form a hybrid bounding procedure. We
show that this algorithm enables the decomposition of a given system into very small abstractions
compared to state-of-the-art algorithms. Also experimentally, compared to existing practical ap-
proaches, ours can yield exponentially tighter bounds, which we use to significantly improve the
coverage and performance of a propositional satisfiability based planner.

The other problem which we seek to solve compositionally is reachability between states. We
provide a novel procedure to exploit symmetries for efficient computation of reachability between
states in transition systems. This procedure differs from existing approaches in that we use sym-
metries to obtain an abstraction of the concrete problem description, which we call the descriptive
quotient. The reachability computation is then done on the abstraction, and if a path is found in
the descriptive quotient, it is used to synthesise a path in the concrete system. We show experi-
mentally that this approach significantly outperforms other approaches to exploit symmetries for
finding paths between states in many standard AI planning benchmarks. A drawback with this
method, nonetheless, is that it is incomplete.

Our last contribution is that we provide a library of formal proofs for transition systems in
the interactive theorem prover HOL4 and we use it to formally verify the algorithms that we
developed. Although there are many formal proof libraries on the subject of transition systems,
the library that we developed is the first we are aware of that is dedicated for systems in the factored
representation.

Availability All our HOL scripts, experimental code and data are available from https://
MohammadAbdulaziz@bitbucket.org/MohammadAbdulaziz/planning.git.

1.1.1 Publications

During the course of my PhD I wrote as a main contributor, with other contributors, the papers
and manuscripts that are listed below:

Mohammad Abdulaziz and Lawrence C Paulson. An Isabelle/HOL formalisation of Green’s theo-
rem. In International Conference on Interactive Theorem Proving, pages 3–19. Springer, 2016.

Mohammad Abdulaziz, Charles Gretton, and Michael Norrish. Mechanising Theoretical Upper
Bounds in Planning. In Workshop on Knowledge Engineering for Planning and Scheduling,
2014.

Mohammad Abdulaziz, Charles Gretton, and Michael Norrish. Verified Over-Approximation of
the Diameter of Propositionally Factored Transition Systems. In Interactive Theorem Proving,
pages 1–16. Springer, 2015a.

Mohammad Abdulaziz, Michael Norrish, and Charles Gretton. Exploiting symmetries by planning
for a descriptive quotient. In Proc. of the 24th International Joint Conference on Artificial
Intelligence, IJCAI, pages 25–31, 2015b.

Mohammad Abdulaziz, Charles Gretton, and Michael Norrish. A State Space Acyclicity Property
for Exponentially Tighter Plan Length Bounds. In International Conference on Automated
Planning and Scheduling (ICAPS). In Press, 2017a.

https://MohammadAbdulaziz@bitbucket.org/MohammadAbdulaziz/planning.git
https://MohammadAbdulaziz@bitbucket.org/MohammadAbdulaziz/planning.git

§1.2 Thesis Structure 5

Mohammad Abdulaziz, Michael Norrish, and Charles Gretton. Formally Verified Algorithms for
Upper Bounding State Space Diameters. In To appear in the Journal of Automated Reasoning,
2017b.

1.2 Thesis Structure

This thesis is organised as follows. In Chapter 2 we discuss the basics concepts related to factored
transition systems and the action execution semantics in our framework. In Chapter 3 we describe
previous work in the literature related to computing upper bounds on topological properties of
directed graphs in general as well as directed graphs that model state spaces. We then discuss
more formal definitions that are more specific to compositional upper-bounding. We then describe
our different compositional algorithms and results to compute upper bounds, and then we end
this chapter by concluding remarks regarding our approach for compositional upper-bounding as
well as some open questions that we believe are interesting. In Chapter 4 we discuss different
approaches in the literature to compute reachability in general directed graphs as well as state
spaces, and focus more on the approaches that try to exploit symmetry to enhance the efficiency
of the reachability computation. Then we discuss our approach for compositional computation of
reachability, where we formally define concepts that are relevant to our algorithm, and we focus on
computing reachability within the framework of automated planning. Then we finalise that chapter
with remarks summarising the merits of our compositional approach to compute reachability and
possible ways of extending it. Lastly, in Chapter 5, we discuss previous work in the literature on
formalisation and we focus on results related to formalising transition systems. We then discuss
our formalisation of factored transition systems and our compositional algorithms in the interactive
theorem prover HOL4, and then finish that chapter by some concluding remarks on our experience
in formalising our algorithms.

6 Introduction

Chapter 2

Basic Concepts and Notations

Where we do not refer to a specific function, we shall use the symbol f . We formalise functions as
sets of key-value pairs (k 7→ v). We use the term domain mathematically. We write D(f) for the
domain of f , i.e., {k | (k 7→ v) ∈ f}. We writeR(f) for the range of f , i.e., {v | (k 7→ v) ∈ f}.

Definition 1 (Digraph). A digraph whose vertices are labelled by values of type α (α-graph) Gα
is represented by the tuple 〈V,E, f〉. V is the set of vertices, which we denote as V (Gα). E is a
set of edges, that are distinct ordered pairs of vertices from V (Gα), which we denote as E(Gα).
f : V (Gα) ⇒ α is a labelling function, where a vertex u1 ∈ V (Gα) has the label f(u1) of type
α, which we denote as Gα(u1). We note that when we illustrate a digraph in a figure, a vertex
u1 is docketed with the label f(u1) instead of the vertex name u1. We also omit self loops. For
u1 ∈ V (Gα), the set of children of u1 is childrenGα(u1) = {u2 | (u1, u2) ∈ E(Gα)}. If f is
injective, we use l ∈ Gα to denote that l is a label of some u1 ∈ V (Gα), i.e. l = f(u1), and we use
childrenGα(l) to refer to the labels of the children of u1, i.e. {Gα(u2) | u2 ∈ childrenGα(u1)}. For
Gα ≡ 〈V,E, f〉, the image of a function g : α ⇒ β on Gα is the β-graph gLGαM ≡ 〈V,E, g ◦ f〉,
where g ◦ f is the composition of f and g. Effectively, the image operation on a digraph is a
relabelling operation.

We now define factored representations of digraphs, which are mainly used to compactly rep-
resent digraphs that model state spaces. In these representations a digraph is propositionally fac-
tored, where vertices correspond to “states” and sets of edges are compactly described in terms of
“actions”. In this formalism edges and paths between vertices correspond to executing actions and
action sequences, respectively, between states.1

Definition 2 (States and Actions). A state, x, is a finite map from variables—i.e., state-
characterising propositions—to Booleans, i.e. a set of mappings v 7→ b. We write D(x) to denote
{v | v 7→ b ∈ x}, the domain of x. For states x1 and x2, the union, x1]x2, is defined as {v 7→ b |
if (v ∈ D(x1)) then b = x1(v) else b = x2(v)}. Note that the state x1 takes precedence. An
action is a pair of finite maps, (p, e), where p represents the preconditions and e represents the
effects. For action π = (p, e), D(π) ≡ D(p) ∪ D(e).

Definition 3 (Execution). When an action π (= (p, e)) is executed at state x, it produces a suc-
cessor state ex(x, π), formally defined as ex(x, π) = if p * x then x else e]x. We lift ex to lists
of actions

→
π as the second argument. So ex(x,

→
π) denotes the state resulting from successively

applying each action from
→
π in turn, starting at x, which corresponds to a path in the state space.

1This representation is equivalent to representations commonly used in the model checking and AI planning com-
munities (e.g. STRIPS by Fikes and Nilsson (1971) and SMV by McMillan (1993)). Whereas conventional expositions
in the planning and model-checking literature would also define initial conditions and goal/safety criteria, here we omit
those features from discussion. Our bounds and the different topological properties we consider are independent of
those features.

7

8 Basic Concepts and Notations

v1v2v3

v1v2v3 v1v2v3

v1v2v3

v1v2v3 v1v2v3 v1v2v3 v1v2v3

Figure 2.1: The state space of δ in Example 1.

We give examples of states and actions using sets of literals. For example, {v1, v2} is a state
where state variables v1 is (maps to) true, and v2 is false and its domain is {v1, v2}. ({v1, v2}, {v3})
is an action that if executed in a state where v1 and v2 hold, it sets v3 to true. D(({v1, v2}, {v3})) =

{v1, v2, v3}.

Definition 4 (Factored System). For a set of actions δ we writeD(δ) for the domain of δ, which is
the union of the domains of all the actions in δ. The set of valid states, written U(δ), is {x | D(x) =

D(δ)}. The set of valid action sequences is the Kleene closure of δ, i.e δ∗ = {→π | set(
→
π) ⊆ δ},

where set(l) is the set of members in list l.
δ is the factored representation of the digraph G(δ) ≡ 〈V,E, f〉, where V = U(δ), E ≡

{(x, ex(x, π)) | x ∈ U(δ), π ∈ δ}, and f is the identity function. We refer to G(δ) as the state
space of δ. For states x and x′, x x′ denotes that there is a

→
π ∈ δ∗ such that ex(x,

→
π) = x′.

Let the connected component for a state x be S(δ, x) = {y | x y ∨ y x}.

Example 1. Consider the following factored representation, δ, and the digraph in Figure 2.1 that
represents its state space.

{
p1 = ({v1, v2, v3}, {v1}), p2 = ({v1, v2, v3}, {v1, v2}), p3 = ({v1, v2, v3}, {v1}),
k1 = ({v3}, {v1, v2}), k2 = ({v3}, {v1, v2}), k3 = ({v3}, {v1, v2}), k4 = ({v3}, {v1, v2})

}
.

In the figure different states defined on the variables D(δ) = {v1, v2 v3} are shown. Interpreting δ
as a transition system, it has two “modes” of operation, where the variable v3 in the preconditions
of actions in δ determines the mode of operation. Each of those modes represents one connected
component of the digraph in Figure 2.1, where actions k1, k2, k3, k4 (which execute successfully if
v3 maps to false) represent edges in the clique component. For instance, action k1 represents all
incoming edges to vertex {v1, v2 v3}. On the other hand, each one of the actions p1, p2, p3 (which
execute successfully if v3 maps to true) represents an edge in the simple path component.

Chapter 3

Compositional Upper-Bounding of
Topological Properties

Two fundamental properties of digraphs are the diameter and the length of the longest simple path
(the latter also known as the recurrence diameter in the verification community). Knowing an
upper bound on the diameter or the recurrence diameter of a state space comes up as a necessary
ingredient for many practical applications and algorithms in model checking and AI planning.
A prominent example is the bounded model-checking algorithm by Biere et al. (1999), whose
completeness depends on having an upper bound on the diameter (for checking safety properties
or plan existence) or the recurrence diameter (for checking liveness properties). Because of this
practical importance a lot of effort has been spent trying to efficiently compute or approximate
both properties.

However, and as we pointed out earlier to compute either property, one needs to expand the
factored representation δ and construct the digraph modelling its state space, G(δ), which is in-
feasible. This is further compounded by the fact that state-of-the-art algorithms to compute or
reasonably approximate the diameter and the longest path, have worse than quadratic (e.g. Yuster
(2010); Aingworth et al. (1999)) and exponential (e.g. Kroening and Strichman (2003)) run-times,
respectively, in the size of the digraph. In this chapter we study applying the compositional ap-
proach to compute upper bounds on both properties for digraphs that model state spaces. In
particular, we consider computing the topological property for a set of minors of the state space.
Minors’ properties are then composed into an upper bound on the property of the original digraph.

State Variable Dependency Informally, a state variable v1 depends on v2 iff the assignment of
v2 at some state can possibly affect assignment of v1 in a current or a future state. This relation
lifts to sets of state variables, where a set vs2 depends on vs1 iff vs2 has a variable that depends
on some variable in vs1. Dependency based analysis of model-checking and planning problems
has been used for a long time (e.g. Rintanen and Gretton (2013); Baumgartner et al. (2002);
Williams and Nayak (1997); Helmert (2006a); Kroening (2006)). A practically important class
of projections are ones done on partitions of the state variables whose members are closed under
mutual variable dependency, i.e. variable dependencies between different equivalence classes are
acyclic. Those partitions capture the abundantly present acyclic dependencies between different
modules of real-world systems, such as different circuit components.

3.1 Related Work

Computing the diameter exactly can be done via solving the All Pairs Shortest Path (APSP) prob-
lem for the (di)graph at hand. APSP cannot be solved in better than quadratic time (in the number

9

10 Compositional Upper-Bounding of Topological Properties

of vertices of the (di)graph), and existing exact solutions have a run-time close to cubic (e.g.
Fredman (1976); Alon et al. (1997); Chan (2010); Yuster (2010)). Furthermore, there is strong
evidence that the diameter cannot be computed in time better than quadratic (Roditty and Vas-
silevska Williams, 2013). This run-time can be very limiting in digraphs arising in practical ap-
plications due to their size. Accordingly, in the algorithms community a lot of work has been
done on developing methods to approximate the diameter. In a seminal paper, Aingworth et al.
(1999) devised an algorithm that computes a 3

2 -approximation of the diameter for digraphs in
O(m

√
n log n+ n2 log n) time, where n is the number of vertices and m is the number of edges.

Examples of other work studying approximation algorithms for digraph diameters include Roditty
and Vassilevska Williams (2013); Chechik et al. (2014); Abboud et al. (2016).

On the other hand, computing the recurrence diameter is an NP-hard problem (Pardalos and
Migdalas, 2004), with only known exact solutions in exponential time. Accordingly it is much
harder to compute than the diameter, especially, for practical digraphs. Furthermore, the hard-
ness of computing the recurrence diameter in digraphs was reaffirmed by Björklund et al. (2004),
where they showed that, in the general case, it is impossible (under plausible assumptions) to get
a polynomial approximation of the length of the longest path in polynomial time. Existing poly-
nomial time approximation algorithms for the longest path, like Alon et al. (1995); Björklund and
Husfeldt (2003), can only find paths of lengths logarithmic in the length of the longest path. Also,
to the best of our knowledge, all approximation techniques studied in the algorithms community
are lower bounding techniques.

In the graph theory and the combinatorics communities, diameters of undirected graphs have
been extensively studied since 1965, where work like Moon et al. (1965); Erdős et al. (1989);
Knyazev (1987) computed upper bounds for different classes of undirected graphs. However,
for digraphs, work on upper-bounding diameters started more recently. In 1992 Soares (1992)
provided a tight upper bound on the diameter of biregular digraphs. Then starting in 2000, Peter
Dankelmann et al. treated different structures of digraphs (e.g. Dankelmann (2005); Dankelmann
and Volkmann (2010); Dankelmann and Dorfling (2016)).

The completeness of bounded model-checking (Biere et al., 1999, 2003) and satisfiability
(SAT) based planning (Kautz and Selman, 1992) depends on having an upper bound on the di-
ameter or the recurrence diameter (depending on the verification problem at hand), and the tighter
that bound the more quickly the algorithm will likely terminate. Because of that, studying the
diameter and the recurrence diameter is an active research topic in the verification community (see
for example Biere et al. (1999, 2003); Kroening and Strichman (2003); Sheeran et al. (2000);
Kroening et al. (2011); Bundala et al. (2012); Clarke et al. (2009)). The most dominant approach
to compute the diameter or the recurrence diameter in verification applications is via encodings in
SAT (see Biere et al. (1999); Kroening and Strichman (2003)). Most notably, Biere et al. (1999)
conjecture that for the question of “whether for a certain digraph, a number N is its diameter”,
there is not a SAT encoding of size polynomial in N . However, if the question is “whether N is
the recurrence diameter”, they provide a SAT encoding of size O(N2), which was improved by
Kroening and Strichman (2003) to O(N logN).

Applying the compositional approach for diameter upper-bounding was pioneered by Baum-
gartner et al. (2002), in the context of bounded model-checking. They showed that the diameter
of the system’s state space is upper-bounded by a polynomial in the recurrence diameters of the
system’s projections on sets of state variables closed under mutual dependency (i.e. a set of con-
tractions of the state space). Also, more recently, Rintanen and Gretton applied a similar approach
to upper-bound the diameters for AI planning Rintanen and Gretton (2013) problems, but using
the number of the contractions’ states instead of the recurrence diameter.

§3.2 Results 11

3.2 Results

Our contributions are both theoretical and practical. We first discuss the theoretical contributions.
First let Gi denote a digraph and vs i denote a set of state variables. Then let G1..n denote the set
of digraphs {G1,G2, ..,Gn} and vs1..n denote the sets of variables {vs1, vs2, .., vsn}. For some
function b, let b1..n denote {b(G1), b(G2), .., b(Gn)}. For some partition vs1..n, let GVS denote the
dependencies between different members of vs1..n.

Our first two results are negative. We show that recurrence diameters of projections’ state
spaces cannot be composed, solely based on dependencies between different sets of variables in
vs1..n, to upper-bound the recurrence diameter of the state space of the system (Theorem 2). Also,
if vs1..n satisfies the additional requirement of having two members with a dependency between
them, then the same result applies to the diameter (Theorem 1).

To circumvent these negative results we define two new topological properties that can be
compositionally bounded, which are themselves upper bounds on the diameter and the recurrence
diameter. Thus they can be used to compositionally upper-bound the diameter and the recurrence
diameter. We consider projections induced by two types of partitions of the set of state variables of
δ: arbitrary partitions and partitions whose equivalence classes are closed under mutual variable
dependency.

The first new topological property, is the traversal diameter (td), which is one less than the
largest number of vertices that can be traversed by any path in a digraph. td can be seen as a
measure of branching in G(δ). It is an upper bound on (and can be exponentially larger than) the
recurrence diameter, and a lower bound on (and can be exponentially smaller than) the number of
states in G(δ) (Theorem 5). Its main advantage is that it can be compositionally bounded using
projections obtained from an arbitrary partition vs1..n. It is upper-bounded byΠ1≤i≤n(td i+1)−1,
if the contractions G1..n of G(δ) are state spaces of projections of δ on members of vs1..n (Theo-
rem 3). Thus it provides a very flexible tool to compositionally upper-bound both the diameter and
recurrence diameter. We also prove a strong statement of tightness for that bound: any function
taking as input td1..n and GVS whose output can be less than Π1≤i≤n(td i + 1)− 1, is not a sound
bound on td , for any partition. We also show that td can be computed in time that is linear in the
size of the digraph (Theorem 6).

Although compositional upper-bounding using the traversal diameter has the advantage of
being applicable to any partition, it can be a rather loose upper bound on the diameter. To alleviate
that, we define the sublist diameter (`), an upper bound on the diameter and a lower bound on the
recurrence diameter. A main feature of it is that it can be exponentially smaller than the recurrence
diameter, but it can also be exponentially larger than the diameter (Theorem 10).

We introduce a function Nsum that takes `1..n and GVS. We show that it computes an upper
bound on the sublist diameter that is a polynomial in `1..n, if members of vs1..n are closed under
mutual variable dependency (Lemma 3). This is significantly better than using td1..n to upper-
bound the diameter since ` can be exponentially smaller than td and because the polynomials
produced by Nsum do not necessarily have all possible product terms, as Π1≤i≤n(td i + 1) − 1

does. Compared to similar earlier approaches in Baumgartner et al. (2002); Rintanen and Gretton
(2013), this is a substantial improvement in two ways. Firstly, we prove that any function taking
the same input as Nsum, and whose output can be less that computed by Nsum is not a sound upper
bound on the diameter, i.e. Nsum is a lower bound on all the previous approaches (Theorem 9).
Furthermore, we experimentally verify that Nsum computes significantly tighter bounds than pre-
vious approaches. Secondly, we use the contractions’ sublist diameters which can be exponentially
tighter than functions used previously (namely, the recurrence diameter and the state space size).
However, we show that computing the sublist diameter is NP-hard (Theorem 12). The relation

12 Compositional Upper-Bounding of Topological Properties

between the different topological properties and bounding functions can be found in Figure 3.1.
Our proof of Lemma 3 is the most technical. It is constructive, and it depends on the fact

that a sequence of transitions in δ (i.e. edges in G(δ)) is equivalent to different sequences of
transitions in the different projections (i.e. edges in G1..n) that are interleaved. We show that for
each transition sequence from a projection, removing redundant transitions makes it shorter than
the sublist diameter of the projection. We then recombine all shortened transition sequences with a
novel proof artifact, the stitching function (H), and show that the recombined sequence both begins
and ends in the same vertices as the original one, and is shorter than the bound produced by Nsum.
Although they had different purposes from ours, in some sense this is a generalisation of the theory
developed in Knoblock (1994) and in Brafman and Domshlak (2003).

Another interesting proof is that of Theorem 10. It relies on the fact that, unlike the diameter
or the recurrence diameter, the sublist diameter depends on the factored representation δ rather
than the underlying state space G(δ). We show that it can be minimised through factoring more
edges into fewer actions.

Another point to highlight is in our tightness proofs. They depend on digraph constructions
that we refer to as “flowers” and “inverted flowers” (see Figure 3.6a and Figure 3.10 for an ex-
ample). The main feature of those constructions is that they are digraphs that can have arbitrarily
many vertices added to them, without changing their diameters, sublist diameters, or longest paths.

We combine exploitation of acyclicity in variable dependency constituted by Theorem 8, with
a novel approach to exploiting acyclicity in the state space G(δ), to form a hybrid bounding pro-
cedure. This algorithm enables the decomposition of a given system to abstract sub-systems that
are much smaller than what is attainable using state-of-the-art algorithms, which all depend only
on acyclicity in variable dependency. This provides the potential for exponentially easier compu-
tation of upper bounds. Also experimentally, compared to existing practical approaches, ours can
yield exponentially tighter bounds.

This procedure is based on first finding a partition of the states in G(δ) that induces an acyclic
“quotient” contraction of G(δ). Then, we show that the diameter of G(δ) is upper-bounded by the
weightiest path in the acyclic quotient of G(δ). The weight of a path is the number of edges in it
added to the cost of every vertex it traverses. The cost of visiting a vertex in that quotient digraph
is the diameter of the subgraph of G(δ) induced by the states in that quotient vertex. However, to
avoid computing the acyclic quotient by constructing G(δ) and the possible state space explosion,
we get it through projecting δ on a subset of its state variables. That way, the acyclic quotient is the
state space of the projection of δ. Also, to avoid the possible state space explosion in computing
the subgraphs induced by different quotient vertices explicitly, we compute them in the factored
form by snapshotting δ on different states of the projection.

We experimentally show that this algorithm significantly outperforms—both in the tightness
of the bounds obtained and in the quality of decomposition—existing approaches. Using the upper
bounds computed by that algorithm as horizons for a SAT-based planner, we prove the unsolvabil-
ity of problems that cannot be proven using the state-of-the-art state space search planners and
model-checkers. One notable example is the problem of model-checking the safety of the hotel
key protocol. We also significantly improve the coverage of the SAT-based planner Madagascar
MP by using upper bounds rather than ramp-up strategies Rintanen (2012).

3.3 Compositional Upper-Bounding: Negative Results

Topological properties that we consider upper-bounding are the diameter and the recurrence di-
ameter. The diameter is the length of the longest shortest path between any two valid states. This
can be formally defined as follows for a propositionally factored system.

§3.3 Compositional Upper-Bounding: Negative Results 13

d

`

rd

td

Π1≤i≤n(tdi + 1)− 1

|V (G(δ))|

Nsum(`1..n,GVS)

Arbitrary vs1..n

vs1..n has acyclic dependencies

Figure 3.1: A diagram that represents the upper-bounding relations between different topological proper-
ties. An arrow from f1 to f2 denotes that we showed f1(δ) ≤ f2(δ), for any δ, and f2 is a “tight” bound on
f1. A solid arrow denotes that we showed an exponential separation between f1 and f2. Functions in the
dotted ellipse can be compositionally bounded by projections induced by arbitrary partitions of state vari-
ables, while those in the solid ellipse need the partitions’ members to be closed under mutual dependency.

Definition 5 (Diameter). Let |l| be the length of a list l. The diameter is defined as follows.

d(δ) = max
x∈U(δ)

max
→
π∈δ∗

min{|→π
′
| | →π

′
∈ δ∗ ∧ ex(x,

→
π) = ex(x,

→
π
′
)}

We would like to note that instead of quantifying over pairs of states, we quantify over states and
paths going outside of those states. This is to avoid the complexities arising from the situation
when two states are not connected.

The recurrence diameter is the length of the longest simple path in the digraph modelling the
state space. This can be formally defined as follows.

Definition 6 (Recurrence Diameter). Let distinct(x,
→
π) denote that all states traversed by execut-

ing
→
π at x are distinct states.

rd(δ) = max
x∈U(δ)

max
→
π∈δ∗

max{|→π | | distinct(x,
→
π)}

If there is a valid action sequence between any two states, then there is a valid action sequence
between them that is no longer than the diameter. Also, it should be clear that the recurrence
diameter is an upper bound on the diameter.

3.3.1 Projection and Variable Dependency

A key concept for compositional reasoning about factored representations of digraphs is projec-
tion. Projection of a transition system is equivalent to a sequence of vertex contractions in the
digraph modelling the state space.

Definition 7 (Projection). Projecting an object (a state x, an action π, a sequence of actions
→
π

or a factored representation δ) on a set of variables vs restricts the domain of the object or the
components of composite objects to vs . Projection is denoted as x�vs , π�vs ,

→
π�vs and δ�vs for

a state, action, action sequence and factored representation, respectively. In the case of action
sequences, an action with no effects after projection is dropped entirely.

14 Compositional Upper-Bounding of Topological Properties

v1v2

v1v2 v1v2

v1v2

Figure 3.2: The contraction of the state space equivalent to the projection of δ on {v1, v2}.

v3

v1 v2

(a)

{v3}

{v1, v2}

(b)

Figure 3.3: (a) the dependency graph of δ from Example 1, and (b) a lifted dependency graph of δ. Actions
induce edges in (a): for example, v1 and v2 co-occur in action effects, while v3 only happens to be in the
precondition.

Example 2. Letting vs = {v1, v2}, below is the projection δ�vs , for δ from Example 1. Figure 3.2
shows G(δ�vs).

{
p1�vs = ({v1, v2}, {v1}), p2�vs = ({v1, v2}, {v1, v2}), p3�vs = ({v1, v2}, {v1}),
k1�vs = (∅, {v1, v2}), k2�vs = (∅, {v1, v2}), k3�vs = (∅, {v1, v2}), k4�vs = (∅, {v1, v2})

}

State variable dependency analysis captures many structures present in factored systems. It
is used to obtain practically very useful projections, e.g. projections on sets of variables that are
closed under mutual dependency. Also in many cases upper-bounding algorithms rely on the state
variable dependencies which are described by the dependency graph.

Definition 8 (Dependency). A variable v2 is dependent on v1 in δ (written v1→v2) iff one of the
following statements holds: 1 (i) v1 is the same as v2, (ii) there is (p, e) ∈ δ such that v1 ∈ D(p)

and v2 ∈ D(e), or (iii) there is a (p, e) ∈ δ such that both v1 and v2 are inD(e). A set of variables
vs2 is dependent on vs1 in δ (written vs1→vs2) iff: (i) vs1 and vs2 are disjoint, and (ii) there are
v1 ∈ vs1 and v2 ∈ vs2, where v1→v2.

Definition 9 (Dependency Graph). This graph, sometimes called the causal graph, was described
independently by Knoblock Knoblock (1994) and then Williams an Nayak Williams and Nayak
(1997). GD(δ) is a dependency graph of δ iff (i) its vertices are bijectively labelled by variables
from D(δ), and (ii) it has an edge from vertex u1 to u2 iff v1→v2, where v1 and v2 are the labels
of u1 and u2, respectively.

Definition 10 (Lifted Dependency Graph). GVS is a lifted dependency graph of δ iff (i) its vertices
are bijectively labelled by members of a partition of D(δ), and (ii) it has an edge from vertex u1

to u2 (labelled by vs1 and vs2, respectively) iff vs1→vs2.

Example 3. Figure 3.3a and Figure 3.3b show the dependency graph and a lifted dependency
graph of δ from Example 1.

As stated earlier, many compositional algorithms compute reachability in succinct digraphs
successfully exploit structures in the variable dependencies of a system via computing reacha-
bility in projections. Analogously, to compositionally bound the diameter (resp. the recurrence

1Our definition is equivalent to those in Williams and Nayak (1997); Knoblock (1994) in the context of AI planning.

§3.3 Compositional Upper-Bounding: Negative Results 15

diameter) one can imagine a function f that takes the projections’ diameters and the dependencies
between those projections and returns an upper bound on the diameter of the entire system. As
arguments to f , projections’ diameters and their dependencies are encoded as a N-graph, GN, with
one vertex per projection and every edge represents a dependency between two projections. Every
vertex is labelled by the diameter of the corresponding projection.

In the coming sections we show that there is no dependency structure (e.g. acyclic depen-
dencies, symmetric dependencies, etc.) for which such a compositional upper-bounding scheme
can work. This holds for both, (i) the diameter (Theorem 1), and (ii) the recurrence diameter
(Theorem 2). Theorem 1 (resp. Theorem 2) shows that given projections’ diameters (resp. re-
currence diameters) and the dependencies between the projections, we can always construct a
system with an arbitrarily large diameter, that has projections with diameters and dependencies as
the given ones. Thus a function f that takes only projections’ diameters and their dependencies
cannot compute an upper bound on the given system’s diameter, since they do not have enough
information.

3.3.2 Diameter Cannot be Compositionally Upper-Bounded

Theorem 1. For any function f : N-graph⇒ N, and an N-graph, GN that has at least one edge,
there is a factored system δ such that: (i) f(GN) < d(δ), and (ii) there is a lifted dependency graph
GVS for δ, such that GN = DLGVSM, where D(vs) = d(δ�vs).2

The proof is made of three main steps. Firstly, for each given projection diameter n (i.e.
label in GN) we construct a factored system γn, that is a path with diameter n. Those paths are
constructed such that: i) their union is a system with a diameter that is more than f(GN), and ii)
they are projections of the final construction δ, so their domains are disjoint, as the projections are
supposed to be performed on a partition. Secondly, for every dependency from projection γu1 to
γu2 (i.e. an edge GN), we construct an action that has preconditions from γu1 and effects from γu2 .
Those actions are supposed to not change the state space of the final construction, they only add
dependencies corresponding to the edges in GN. Thirdly, we show that the union of the constructed
projections and the dependency inducing actions is the required witness δ, i.e. its diameter exceeds
f(GN).

To facilitate our constructions, we use the following notation for states: states are annotated
with a superscript, such that variables in states’ domains are chosen to have different names if
the superscripts of the states are different.3 Formally, for two states xia and xjb, D(xia) = D(xjb) if
i = j, andD(xia)∩D(xjb) = ∅ otherwise. A path system is defined as γin = {(xij , xij+1) | 1 ≤ j ≤
n+ 1}, where the state space γin contains a simple path with n+ 1 states. Note that d(γin) = n.

Proof. Let n = f(GN) + 1. This is the number that the constructed system will have as its
diameter. Take an arbitrary edge (u1, u2) ∈ E(GN). For u3 ∈ V (GN), let γu3 denote the simple
path γu2n+GN(u2) for u3 = u2 and γu3GN(u3) otherwise. Firstly, we construct a system δu2 whose
state space has a simple path with GN(u2) states and a clique with n states attached to the last
state in the path. Thus, δu2 has GN(u2) as its diameter. Formally δu2 = {(xu2i , x

u2
i+1) | 1 ≤ i ≤

GN(u2)} ∪ {(xu2i , x
u2
j) | GN(u2) ≤ i, j ≤ n+ GN(u2) + 1}.

Consider a fresh variable z (i.e. z 6∈ D(γu3), for any u3 ∈ V (GN)). Let δ′u2 = {({z}] p, e) |
(p, e) ∈ δu2} ∪ {({z}] p, e) | (p, e) ∈ γu2}, i.e. a transition system with two modes of operation
determined by the value of z. If z is false then it operates as a path with a clique attached to its
end, i.e. exactly like δu2 . Otherwise, it operates as a path of length n + GN(u2) + 1, i.e. exactly

2GN is a relabelling of GVS: a vertex labelled by vs in GVS is relabelled by the diameter of δ�vs
3In our proofs we use the nodes in the dependency graph as a superscript.

16 Compositional Upper-Bounding of Topological Properties

2

3 2

(a)

xu2
1 xu2

2 xu2
3 xu2

4 xu2
5 xu2

6 xu2
7

(b)

xu1
1 xu1

2 xu1
3 xu1

4

(c)

xu3
1 xu3

2 xu3
3

(d)

xu2
1 xu2

2 xu2
3

xu2
4

xu2
5

xu2
6

xu2
7

(e)

{v1, v2, z}

{v3, v4, v5}{v6, v7}

(f)

Figure 3.4: Referring to Example 4: (a) is the natural number labelled graph. (b), (c), (d) and (e) are
the largest connected components in G(γu2), G(γu1), G(γu3), and G(δu2

), respectively. (f) is a lifted
dependency graph of the factored system.

like γu2 . In this way the largest component in the state space of δ′u2 has a short diameter if z is
removed from the actions, otherwise the diameter blows up to d(δ′u2) = n+ GN(u2).

Let δu1 = {({z}] p, {z}] e) | (p, e) ∈ γu1}. This system operates exactly as the path
γu1 when z is false. Since the value of z does not change, d(δu1) = GN(u1). We now show that
δ = {(xu31] x

u4
1 , xu42) | (u3, u4) ∈ E(GN)} ∪ δ′u2 ∪ δu1 ∪

⋃
u3∈V (GN) γ

u3 is our required witness.
To show that δ satisfies the first requirement (i), consider the states x1 = {z}]

⊎
u3∈V (GN) x

u3
1

and x2 = {z}] xu2n+GN(u2)+1]
⊎
u3∈V (GN)\u2 x

u3
1 . The action sequence

→
π = [({z}]

xu21 , xu22); ({z}] xi2, x
u2
3) . . . ; ({z}] xu2n+GN(u2), x

u2
n+GN(u2)+1)] reaches x2 if executed at x1, and

there is not an action sequence from δ∗ that can reach x2 from x1 that is shorter than
→
π . This

means that the diameter of δ is more than the length of
→
π , which is n+ GN(u2).

To show that δ satisfies the second requirement (ii) on the witness, consider a relabelling,
GVS, of GN, where u1 is relabelled by D(δu1) and every other every vertex u3 is relabelled by the
domain of the path γu3 . Recall that δ had the set of actions {(xu31]x

u4
1 , xu42) | (u3, u4) ∈ E(GN)}

as a subset. These actions are constructed such that they add dependency from D(γu3) to D(γu4)

in δ iff (u3, u4) ∈ E(GN). This means that the edges of GVS represent the dependencies of δ and
accordingly it is a lifted dependency graph of δ. Also since, δ�D(γu1) = γu1 , for u1 ∈ V (GN), and
since by construction GN is a relabelling of GVS, we have GN = DLGVSM.

Example 4. This example shows the previous construction for a function f : N-graph
⇒ N, and the graph GN shown in Figure 3.4a, where in this example f(GN) = 4, and
accordingly n = 5 . In GN there are three vertices u1 (the root), u2, and u3, la-
belled by the numbers 2, 3, and 2, respectively. In this case the first simple path system
is γu2 = {(xu21 , xu22), (xu22 , xu23), (xu23 , xu24), (xu24 , xu25), (xu25 , xu26), (xu26 , xu27)}, where xu21 =

{v3, v4, v5}, xu22 = {v3, v4, v5}, xu23 = {v3, v4, v5}, xu24 = {v3, v4, v5}, xu25 = {v3, v4, v5},
xu26 = {v3, v4, v5}, and xu27 = {v3, v4, v5}. The second simple path system is γu1 =

{(xu11 , xu12), (xu12 , xu13), (xu13 , xu14)}, where xu11 = {v1, v2}, xu12 = {v1, v2}, xu13 = {v1, v2},
and xu14 = {v1, v2}. The third simple path system is γu3 = {(xu31 , xu32), (xu32 , xu33)}, where
xu31 = {v6, v7}, xu32 = {v6, v7}, and xu33 = {v6, v7}. The largest connected components
of the state spaces of the three paths are shown in Figures 3.4b-3.4d, and their diameters are
d(γu2) = n+ GN(u1) = 6, d(γu1) = GN(u2) = 3, and d(γu3) = GN(u3) = 2.

The system δu2 that has a simple path of length GN(u2) = 3 and a clique of size n = 5 attached

§3.3 Compositional Upper-Bounding: Negative Results 17

to its last state, xu23 , is

δu2 = {(xu21 , xu22), (xu22 , xu23)} ∪ {(xu2i , x
u2
j) | 3 ≤ i, j ≤ 7}

The largest component of its state space is shown in Figure 3.4e and d(δu2) = GN(u2) = 3. To
construct the system that has two modes of operation, δ′u2 , we use a variable z to determine the
two modes of δ′u2 . We add the literal z to the preconditions of every action in δu2 to ensure that
they are activated when z is true, and we add the literal z to the preconditions of every action
in γu2 to ensure that they are activated when z is false. Thus, δ′u2 = {({z}] p, e) | (p, e) ∈
δu2} ∪ {({z}] p, e) | (p, e) ∈ γu2}, where for instance, the action (xu24 , xu25) from δu2 becomes
({z}] xu24 , xu25) = ({z, v3, v4, v5}, {v3, v4, v5}) and the action (xu24 , xu25) from γu2 becomes
({z}] xu24 , xu25) = ({z}] xu24 , xu25) = ({z, v3, v4, v5}, {v3, v4, v5}).

To construct δu1 we add z to the preconditions and effects of each action in γu1 . δu1 will have
two modes of operation depending on the value of z. If z is true no actions at all can be executed,
otherwise actions from γu1 can be executed, and accordingly d(δu1) = d(γu1).

The required witness is δ = {(xu11] x
u2
1 , xu22), (xu11] x

u3
1 , xu32)} ∪ δ′u2 ∪ δu1 ∪ γ

u3 . The
combined system has a diameter of 6 because it has a path isomorphic to the path in γu2 from
{z}] xu21 {z}] x

u2
7 . In particular, this path is between the state x1 = {z}] xu21] x

u1
1] x

u3
1 =

{z, v3, v4, v5, v1, v2, v6, v7} and the state x2 = {z}] xu27] x
u1
1] x

u3
1 {z, v3, v4, v5, v1, v2, v6, v7}.

The action sequence
→
π = [(z] xu21 , xu22); (z] xu22 , xu23); (z] xu23 , xu24); (z] xu24 , xu25); (z]

xu25 , xu26); (z] xu26 , xu27)] reaches x2 if executed at x1, and no action sequence shorter than |→π |
can reach x2 from x1. This means that n + GN(u1) = 6 ≤ d(δ). Also, Figure 3.4f is a lifted
dependency graph of δ, as it has the actions {(xu11] x

u2
1 , xu22), (xu11] x

u3
1 , xu32)}.

3.3.3 Recurrence Diameter Cannot be Compositionally Bounded

Theorem 2. For a function f : N-graph ⇒ N, and an N-graph, GN, there is a system δ where:
(i) f(GN) < rd(δ), and (ii) there is a lifted dependency graph GVS for δ, such that GN = RLGVSM,
where R(vs) = rd(δ�vs) (i.e. GN is a relabelling of GVS: a vertex labelled by vs in GVS is
relabelled by the recurrence diameter of δ�vs).

The proof of this theorem is similar in structure to that of Theorem 1. One difference is
that instead of constructing paths for projections, we construct systems whose state spaces are
“flowers” (Figure 3.5). A flower can have arbitrarily many states without changing its recurrence
diameter. This is needed to construct arbitrarily long paths with distinct all states in the final
construction, while keeping the recurrence diameters of projections constant. Flowers are formally
described as follows. First let a petal ηil,m be a loop of m

2 + 1 states labelled with 0 and m
2

other numbers. We formally define it as ηil,m = {(xi(l−2)c+k, x
i
(l−2)c+(k+1 mod a)) | 0 ≤ k ≤

a − 1}, where a = dm2 e + 1 if m is odd, and a = m
2 + 1 otherwise, and c = bm2 c + 1. A

flower system, 4il,m, denotes
⋃

1≤j<k≤l{(xij , xik), (xik, xij)} (i.e. a clique) if m = 1, and ηil,m ∪⋃
1≤j≤l−2{(xijc+k, xijc+(k+1 mod c)) | 0 ≤ k ≤ c− 1} otherwise. 4il,m is a factored system whose

state space contains l cycles (the petals). All other petals are of length bm2 c+ 1, except for the last
one, if m is odd its length is dm2 e+ 1 otherwise its length is m

2 + 1. All of the petals have exactly
one state in common between them (the pistil), which is xi0. In each petal j there is a state tij (the
“petal tip”). tij = xi(l−2)c+da

2
e for the last petal (i.e. j = l−1), and otherwise tij = xijc+d c

2
e. t

i
0 can

be reached by exactly da2e actions from xi0, and xi0 can be reached from ti0 by exactly ba2c actions.
Similarly, for j 6= 1, tij can be reached by exactly d c2e actions from xi0, and xi0 can be reached from

tij by exactly b c2c actions. Denoting by
→
π
i

a7→b the shortest action sequence that joins the petal tip

18 Compositional Upper-Bounding of Topological Properties

xi0

xi1 xi2

xid c
2
e

xic−2xic−1

xic

xic+1

xi
c+d c

2
e

xi2c−2

xi2c−1

xijcxijc+1

xi
jc+d c

2
e

xijc−2 xijc−1

xi(l−2)c

xi(l−2)c+1

xi
(l−2)c+d a

2
e

xi(l−2)c+a−2

xi(l−2)c+a−1

Figure 3.5: The largest connected component in the state space of a flower with 2 ≤ m.

tia with tib, c ≤ |
→
π
i

a7→b| holds. Also rd(4il,m) = m holds. Lastly we use S(4u) to denote the largest
connected component for any state in the state space of 4u, which is always unique for a flower

Proof. Let n = f(GN). This is the number that the constructed system will have as its re-
currence diameter. For every vertex u1 ∈ V (GN), let 4u1 denote the flower 4u1n+2,GN(u1). Let
δ = {(xu10] x

u2
0 , xu21) | (u1, u2) ∈ E(GN)} ∪

⋃
u1∈V (GN) 4

u1 . For each flower 4u1 , denote its
n + 2 petal tips by tu1j , for 0 ≤ j ≤ n + 1. Consider the two states: (i) x1 =

⊎
u1∈V (GN) t

u1
0 ,

and (ii) x2 =
⊎
u1∈V (GN) t

u1
n+1. We show that δ satisfies requirement (i) on the witness by giving

a simple path between the states x1 and x2, whose length is more than n. Consider the action
sequence

→
π constructed by Algorithm 1.

Algorithm 1:
→
π=: []
for 0 ≤ i ≤ n+ 1 // Looping over petals

for u1 ∈ V (GN) // Looping over flowers
→
π =:

→
π_

→
π
u1
i 7→i+1

4 // Go from petal tip tu1i to tu1i+1

The length of
→
π is at least (n + 2)

∑
u1∈V (GN)(c) − 1, since c ≤ |→π

u1
a7→b| for a 6= b. Since

c = bGN(u1)
2 c + 1 then n ≤ |→π |. Also

→
π is constructed such that, if

→
π is executed at x1 it only

traverses distinct states, i.e. it induces a simple path.
To show that δ satisfies requirement (ii), consider a relabelling, GVS, of GN, where every vertex

u1 is relabelled by D(4u1), the domain of the flower 4u1 associated with the vertex. Recall that

4For two lists l1 and l2, l1_l2 denotes their concatenation.

§3.3 Compositional Upper-Bounding: Negative Results 19

δ had the set of actions {(xu10] x
u2
0 , xu21) | (u1, u2) ∈ E(GN)} as a subset. These actions are

constructed such that they add dependency from D(4u1) to D(4u2) in δ iff (u1, u2) ∈ E(GN).
This means that the edges of GVS represent the dependencies of δ and accordingly it is a lifted
dependency DAG of δ. Also since δ�D(4u1)

= 4u1 , and by construction GN is a relabelling of GVS,
we have GN = RLGVSM.

Example 5. This example shows the previous construction for a function f : N-graph⇒ N, and
the graph GN shown in Figure 3.4a, where f(GN) = 2. In this graph there are three vertices u1 (the
root), u2, and u3, labelled by the numbers 2, 3, and 2, respectively. We construct three flowers,
one per vertex. For u2 the constructed flower is 4u24,3 = {(xu20 , xu24), (xu24 , xu25), (xu25 , xu20)} ∪⋃
{{(xu20 , xu2l), (xu2l , x

u2
0)} | 1 ≤ l ≤ 3} where the states are defined as follows xu20 =

{v4, v5, v6} (the pistil), xu21 = {v4, v5, v6} (the first petal tip), xu22 = {v4, v5, v6} (the sec-
ond petal tip), xu23 = {v4, v5, v6} (the third petal tip), xu24 = {v4, v5, v6}, xu25 = {v4, v5, v6}
(the fourth petal tip). Note that since for the flower 4u24,3, m = 3 (i.e. odd), the last petal has
one more state in it (the petal at the bottom of Figure 3.6a). For u3 the constructed flower
is 4u34,2 =

⋃
{{(xu30 , xu3l), (xu3l , x

u3
0)} | 1 ≤ l ≤ 4}, where the states are defined as follows

xu30 = {v7, v8, v9} (the pistil), xu31 = {v7, v8, v9} (the first petal tip), xu32 = {v7, v8, v9} (the
second petal tip), xu33 = {v7, v8, v9} (the third petal tip), and xu34 = {v7, v8, v9} (the fourth
petal tip). For u1 the constructed flower is 4u14,2 = {{(xu10 , xu11), (xu1l , x

u1
0)} | 1 ≤ 4}, where

the states are defined as follows xu10 = {v1, v2, v3} (the pistil), xu11 = {v1, v2, v3} (the first
petal tip), xu12 = {v1, v2, v3} (the second petal tip), xu13 = {v1, v2, v3} (the third petal tip), and
xu14 = {v1, v2, v3} (the fourth petal tip).

The required witness δ = 4u14,2 ∪ 4
u2
4,3 ∪ 4

u3
4,2 ∪ {(x

u1
0] x

u2
0 , xu21), (xu10] x

u3
0 , xu31)} where the

actions {(xu10] x
u2
0 , xu21), (xu10] x

u3
0 , xu31)} add to δ dependencies equivalent to the edges of GN,

i.e. the dependencies shown in Figure 3.6d.

Consider the states x1 = xu11] x
u2
1] x

u3
1 = {v1, v2, v3, v4, v5, v6, v7, v8, v9} and x2 = xu14]

xu24] x
u3
4 = {v1, v2, v3, l, v5, v6, v7, v8, v9}. Following Algorithm 1, the resulting action sequence

is
→
π =

→
π
u1
17→2_

→
π
u2
17→2_

→
π
u3
1 7→2_

→
π
u1
27→3_

→
π
u2
27→3_

→
π
u3
2 7→3_

→
π
u1
37→4_

→
π
u2
37→4_

→
π
u3
3 7→4 and its length is

18.
→
π will reach x2 if executed at x1, while traversing all distinct states. The largest connected

component of G(δ) and the path traversed by executing
→
π from x1 are shown in Figure 3.6e.

3.3.4 Discussion

In both proofs above, it might seem that the constructions and accordingly the theorem statements
are based on a bad choice of projections. However, the point that these results make is subtle
but more profound: any compositional algorithm cannot know whether the given projections are
“sound” just by “looking” in the dependency graph. In other words, if a compositional algorithm
only uses the dependency graph, then there will always be a rouge projection. Thus to guaran-
tee that the given projections can be soundly used for upper bounding, an algorithm needs more
information than just what is available in the dependency graph. This accordingly shows that
all existing compositional bounding algorithms that use only dependency structures (which are
the majority) need some non-trivial extensions that look into more than just dependencies (e.g.
they need to look into state space structures) in order for them to bound the system’s (recurrence)
diameter using projections’ (recurrence) diameters.

20 Compositional Upper-Bounding of Topological Properties

3.4 The Traversal Diameter

The traversal diameter is one less than the largest number of states that can be traversed by any
path. It is defined as follows.

Definition 11 (Traversal Diameter). Let ss(x,
→
π) be the set of states traversed by executing

→
π

from x.
td(δ) = max

x∈U(δ)
max
→
π∈δ∗

|ss(x,
→
π)| − 1.

Example 6. For δ�vs from Example 2 the traversal diameter is 3, since the longest path in its state
space has 4 states.

The most appealing feature of the traversal diameter is that it is an upper bound on the recur-
rence diameter (and accordingly the diameter) that can be compositionally bounded with projec-
tions from arbitrary partitions of the state variables, as shown in the following theorem.

Theorem 3. For a factored representation δ and a partition vs1..n of D(δ), td(δ) ≤
Πvs∈vs1..n(td(δ�vs) + 1)− 1.

Proposition 1. For some k, if for every x ∈ U(δ) and
→
π ∈ δ∗, |ss(x,

→
π)| ≤ k+1, then td(δ) ≤ k.

Proposition 2. For a set of states S, let S�vs denote {x�vs | x ∈ S}. Let sat-pre(x,
→
π) denote

that preconditions of every action in
→
π are satisfied, if

→
π is executed from x. If sat-pre(x,

→
π),

then ss(x,
→
π)�vs = ss(s�vs ,

→
π�vs).

Proposition 3. For any partition vs1..n of D(δ), |ss(x,
→
π)| ≤Πvs∈vs1..n |ss(x,

→
π)�vs |.

The proof of the above proposition comes from the fact that a set of states is a subset of the
cartesian product of its own projections, given that the projection is on a partition of the state
variables.

Proof of Theorem 3. Consider x ∈ U(δ) and without loss of generality, an action sequence
→
π ∈ δ∗

such that sat-pre(x,
→
π). From Definition 11, for any vs , x�vs ∈ U(δ�vs) and

→
π�vs ∈ δ�vs

∗, we
have |ss(x�vs ,

→
π�vs)| − 1 ≤ td(δ�vs). Theorem 3 then follows from Proposition 2, Proposition 3

and Proposition 1.

The bound in the previous theorem is a polynomial that has all possible terms from the traver-
sal diameters of the projections. This bound cannot be improved regardless of the dependency
structure inducing the projections, as follows.

Theorem 4. For any N-graph, GN, there is a factored system δ such that:
(i) Πu1∈V (GN)(GN(u1) + 1) − 1 ≤ td(δ), and (ii) there is a lifted dependency graph GVS
for δ, such that GN = TLGVSM, where T(vs) = td(δ�vs).

Proof. For u ∈ V (GN), let 4u denote the flower 4uGN(u),2. For all u ∈ V (GN), x y holds for
any x, y ∈ S(4u), thus td(4u) = |S(4u)| − 1 = GN(u). Let δ = {(xu10] x

u2
0 , xu21) | (u1, u2) ∈

E(GN)} ∪
⋃
u∈V (GN) 4

u. We now show that δ satisfies requirement (i). First let S(δ) denote
the largest connected component in the state space of δ, which is unique. Since x y holds
for any x, y ∈ S(4u), then x y holds for any x, y ∈ S(δ), and therefore there is a path
that traverses every member of S(δ). Since for u1 6= u2 we have 4u1 ∩ 4u2 = ∅, we have
|S(δ)| = Πu∈V (GN)|S(4u)|. Since Πu∈V (GN)|S(4u)| = Πu∈V (GN)(GN(u) + 1), we have that
Πu∈V (GN)(GN(u) + 1)− 1 ≤ td(δ).

§3.4 The Traversal Diameter 21

To show that δ satisfies requirement (ii), consider a relabelling, GVS, of GN, where every vertex
u is relabelled by the domain of the flower 4u. Recall that δ had the set of actions {(xu10]x

u2
0 , xu21) |

(u1, u2) ∈ E(GN)} as a subset. These actions are constructed such that they add dependency from
D(4u1) toD(4u2) in δ iff (u1, u2) ∈ E(GN). Accordingly edges of GVS represent the dependencies
of δ and accordingly it is a lifted dependency graph of δ. Also since δ�D(4u)

= 4u, for u ∈ V (GN),
and since by construction GN is a relabelling of GVS, we have GN = TLGVSM.

Example 7. This is an example of the construction from Theorem 4, for the nat-
ural number labelled DAG in Figure 3.4a. We construct three flowers, one per
vertex, shown in Figures 3.7a-3.7c. For u2 the constructed flower is 4u23,2 =

{(xu20 , xu21), (xu20 , xu22), (xu20 , xu23), (xu21 , xu20), (xu22 , xu20), (xu23 , xu20)}. The states are defined as
follows xu20 = {v3, v4} (the pistil), xu21 = {v3, v4} (the first petal tip), xu22 = {v3, v4} (the
second petal tip), xu23 = {v3, v4} (the third petal tip). For u3 the constructed flower is 4u32,2 =

{(xu30 , xu31), (xu30 , xu32), (xu31 , xu30), (xu32 , xu30)}. The states are defined as follows xu30 = {v5, v4}
(the pistil), xu31 = {v5, v4} (the first petal tip) and xu32 = {v5, v4} (the second petal tip). For u1

the constructed flower is 4u12,2 = {(xu10 , xu11), (xu10 , xu12), (xu11 , xu10), (xu12 , xu10)}. The states are de-
fined as follows xu10 = {v1, v2} (the pistil), xu11 = {v1, v2} (the first petal tip), and xu12 = {v1, v2}
(the second petal tip). For any x0, x1 ∈ S(4u1), x0 x1 holds and accordingly td(4u1) = 2.
Similarly, td(4u2) = 3 and td(4u3) = 2.

The required witness is δ = {(xu10] x
u2
0 , xu21), (xu10] x

u3
0 , xu31)} ∪ 4u1 ∪ 4u2 ∪ 4u3 , where

the actions {(xu10] x
u2
0 , xu21), (xu10] x

u3
0 , xu31)} add dependencies equivalent to the edges of

AN, i.e. the dependencies shown in Figure 3.7d. Also, in the constructed witness, for all states
x0, x1 ∈ S(δ) (shown in Figure 3.7) x0 x1 holds, and accordingly td(δ) = 35.

There are two reasons the traversal diameter and the above theorems are interesting. Firstly,
the traversal diameter is a non-trivial upper bound on the recurrence diameter, in the sense that it
can be exponentially smaller than the number of states, which is the best known upper bound on
the recurrence diameter. Secondly, the traversal diameter can be computed in linear time, unlike
the NP-hard recurrence diameter.

3.4.1 Tightness of the Traversal Diameter

Theorem 5. There are infinitely many factored systems whose traversal diameter is (i) equal to
their recurrence diameter, and (ii) exponentially smaller (in the number of state variables) than
their state space. There are also infinitely many factored systems whose traversal diameter is
(i) exponentially larger (in the number of state variables) than their recurrence diameter, and
(ii) equal to the size of the largest connected component on their state space.

Theorem 5 follows from Lemma 2 and Lemma 1:

Lemma 1. There are infinitely many factored systems whose traversal diameters are exponentially
smaller (in the number of state variables) than the size of their state spaces.

Proof. For an arbitrary number n ∈ N, we construct a system whose state space size is a factor
of n more than its traversal diameter. Consider the system {(x1

0, x
1
i) | 1 ≤ i ≤ n}. The traversal

diameter of this system is 1 since, the only possible transitions are from state x1
0 to a state x1

i , for
1 ≤ i ≤ n. However the system’s state space has at least n+ 1 states.

Lemma 2. There are infinitely many factored systems whose recurrence diameters are exponen-
tially smaller (in the number of state variables) than their traversal diameters.

22 Compositional Upper-Bounding of Topological Properties

Proof. We show that for an arbitrary number n ∈ N, there is a system whose traversal diameter is
a factor of n more than its recurrence diameter. Consider the flower system 412n,2. The recurrence
diameter of this flower is 2 since the length of each of its petals is 1, and any action sequence that
traverses more than 3 states will traverse x1

0 (the pistil) more than once. Its traversal diameter on
the other hand is 2n, since for any x, y ∈ S(412n,2), x y holds and |S(412n,2)| = 2n+ 1.

3.4.2 Computing the Traversal Diameter

An important aspect of td is that it can be computed in linear time using the following algorithm.
However, we first formally define the quotient of a labelled digraph that is induced by repetitive
vertex contraction operations, and define a function that computes the longest path in a given
digraph weighted by a given function on the vertices.

Definition 12 (Digraph Quotient). For a digraph Gα, and a partition P of V (Gα), the quotient
Gα/P of Gα is the digraph:

(i) V (Gα/P) = P ,

(ii) E(Gα/P) = {(U,W) | U,W ∈ P ∧ ∃u2 ∈ U, u3 ∈W.(u2, u3) ∈ E(Gα)}, and

(iii) the label Gα/P (U) is {Gα(u1) | u1 ∈ U}, for U ∈ V (Gα/P).

Definition 13 (Weighted Longest Path). For a digraph Gα, let the function b : α⇒ N be a function
that assigns a natural number for the label of every vertex in V (Gα). S is

S〈b〉(u1,Gα) = b(Gα(u1)) + max
u1′∈childrenGα (u1)

(S〈b〉(u1
′,Gα) + 1)

Then, let Smax〈b〉(Gα) = max
u1∈V (Gα)

S〈b〉(u1,Gα).

Smax is only well-defined if Gα is acyclic. The definition of Smax follows the scheme of an
algorithm that finds the length of the longest path in a DAG, so its runtime is linear in the size
of V (Gα), if the values of S for different vertices are memoised.5 However, Smax computes the
weightiest path, where an edge weighs one, and a vertex u1 weighs b(Gα(u1)).

Algorithm 2: TRAVDIAM(δ)

SCC := set of strongly connected components of G(δ)
G := G(δ)/SCC
Return Smax〈C〉(G)− 1, where C(scc) = |scc| for scc ∈ SCC

Theorem 6. TRAVDIAM(δ) = td(δ).

Proof. For notational brevity, let G = G(δ)/SCC, and for a strongly connected component scc,
S(scc) = S〈C〉(scc,G) and children(scc) = childrenG(scc). Since G is a DAG, its vertices can
be topologically ordered in a list lSCC .

Firstly, we prove TRAVDIAM(δ) ≤ td(δ). We show that for any strongly connected com-
ponent scc ∈ G there is an action sequence

→
π scc ∈ δ∗ and a state xscc ∈ scc, such that

S(scc) ≤ |ss(xscc,
→
π scc)|, which from Definitions 11 and 13, implies TRAVDIAM(δ) ≤ td(δ).

We prove this by induction on lSCC . The base case, lSCC = [], is straightforward. For the step

5This assumes that b is at most of linear complexity.

§3.5 Using Structural Knowledge for Better Bounds: Acyclic Dependency 23

case lSCC = scc :: l′SCC ,6 and for any scc′ ∈ l′SCC , there is a state x′ ∈ scc′ and an action

sequence
→
π
′
∈ δ∗ where S(scc′) ≤ |ss(x′,

→
π
′
)|. Since scc is a strongly connected component of

states in G(δ), then there is
→
π
′
scc ∈ δ∗ and a state xscc ∈ scc, where

→
π scc traverses exactly all the

states in scc, if executed at xscc ∈ scc, i.e. ss(xscc,
→
π
′
scc) = scc. We have two cases:

Case 1 (children(scc) = ∅). From Definition 13, S(scc) = |scc| = |ss(xscc,
→
π
′
scc)| holds for this

case. Accordingly the required witness
→
π scc is the same as

→
π
′
scc.

Case 2 (children(scc) 6= ∅). Let sccmax be the strongly connected component such that ∀ scc′ ∈
children(scc). S(scc) ≤ S(sccmax). Because sccmax ∈ children(scc) we have sccmax ∈ l′SCC ,
and accordingly from the inductive hypothesis there are xmax ∈ sccmax and

→
πmax ∈ δ∗ such

that S(sccmax) ≤ |ss(xmax,
→
πmax)|.(†) Also, from sccmax ∈ children(scc) and the fact that

both scc and sccmax are strongly connected components, there must be
→
π
′
∈ δ∗, such that

ex(xscc,
→
π
′
scc_

→
π
′
) = xmax. We now show that

→
π scc =

→
π
′
scc_

→
π
′
_
→
πmax is the required wit-

ness. First it is easy to see that ss(xscc,
→
π
′
scc) ∪ ss(ex(xscc,

→
π
′
scc),

→
π
′
) ∪ ss(xmax,

→
πmax) =

ss(xscc,
→
π scc). Since sccmax ∈ children(scc), we have that ss(xmax,

→
πmax) is disjoint with scc

and accordingly |ss(xscc,
→
π
′
scc)|+ |ss(xmax,

→
πmax)| ≤ |ss(xscc,

→
π scc)|. From this, (†), and Defi-

nition 13 we have S(scc) ≤ |ss(xscc,
→
π scc)|.

Secondly, we prove td(δ) ≤ TRAVDIAM(δ) by showing that for any scc ∈ G, xscc ∈ scc, and
→
π scc ∈ δ, we have |ss(xscc,

→
π scc)| ≤ S(scc). Our proof is again by induction on the list lSCC .

The base case, lSCC = [], is straightforward. The step case lSCC = scc :: l′SCC , and we have

that for any strongly connected component scc′ ∈ l′SCC , x′ ∈ scc′, and
→
π
′
∈ δ∗, |ss(x′,

→
π
′
)| ≤

S(scc′) holds. We have two cases:

Case 1 (ss(xscc,
→
π scc) ⊆ scc). Since ss(xscc,

→
π scc) ⊆ scc then |ss(xscc,

→
π)| ≤ |scc|. From

Definition 13, we know that |scc| ≤ S(scc), and accordingly |ss(xscc,
→
π scc)| ≤ S(scc).

Case 2 (ss(xscc,
→
π scc) 6⊆ scc). Since ss(xscc,

→
π scc) 6⊆ scc, then there are

→
π scc, π,

and
→
π children such that: (i)

→
π scc =

→
π
′
scc_π ::

→
π children, (ii) ss(xscc,

→
π
′
scc) ⊆ scc,

and (iii) letting xchildren = ex(ex(xscc,
→
π
′
scc), π), xchildren ∈ sccchildren holds, for some

sccchildren ∈ children(scc). Using the same argument as the last case, we have |ss(xscc,
→
π
′
scc)| ≤

|scc|.(*) Since xchildren ∈ sccchildren, and from the inductive hypothesis, we have that
|ss(xchildren,

→
π children)| ≤ S(sccchildren). Then using (*) and since ss(xchildren,

→
π children) and

scc are disjoint, we have |ss(xscc,
→
π scc)| ≤ |scc| + S(sccchildren). From Definition 13, we have

|scc|+ S(sccchildren) ≤ S(scc) and accordingly |ss(xscc,
→
π scc)| ≤ S(scc).

3.5 Using Structural Knowledge for Better Bounds: Acyclic Depen-
dency

In this section we investigate restricting the type of abstractions to get better compositional bound-
ing properties of different diameter functions. We consider abstractions induced by acyclicity in
the variable dependency graph.

Although both, the diameter and the recurrence diameter are not susceptible to compositional
bounding as shown in Theorem 2 and Theorem 1, Theorem 3 suggests they can be bounded via

6For a list l, h :: l is l with the element h appended to its front.

24 Compositional Upper-Bounding of Topological Properties

compositional bounding of the traversal diameter. This guarantees the main utility of composi-
tional bounding: restricting computations to be done using small abstractions, under very general
conditions. However, bounds computed using this technique can be very loose, especially for the
diameter, and Theorem 4 shows that it impossible to improve them.

Restricting the projections to be induced by acyclic dependency graphs gives rise to a new pos-
sibility: upper-bounding the diameter through computing the recurrence diameter of projections.
We propose a new way of upper-bounding the diameter of a factored system through computing
the recurrence diameters of projections. This has two advantages over just using the aforemen-
tioned technique of compositional bounding using the traversal diameter.

(i) We produce polynomials that are substantially tighter than the product expression from The-
orem 3.

(ii) The recurrence diameter can be exponentially smaller than the traversal diameter.

On the other hand, computing the recurrence diameter is an NP-hard problem, while computing
the traversal diameter can be done in linear time.

3.5.1 Upper-Bounding the Diameter using Abstractions’ Recurrence Diameters

Previous attempts to employ the compositional approach to upper-bound the diameter computed
an upper bound on the diameter of the system’s abstractions and then combined them into an
upper bound on the diameter of the concrete system. For instance, Baumgartner et al. (2002) used
the recurrence diameters of abstractions of the system at hand. A similar approach was tried by
Rintanen and Gretton (2013), where they computed upper-bounds on the size of the state spaces
of the abstractions. Two common features of these approaches are:

(i) both approaches used algorithms defined recursively “bottom-up” on acyclic dependency
graphs (or equivalently, design netlists)

(ii) the algorithms map every dependency graph to a polynomial, where the terms of the poly-
nomial depend only on the structure of the dependency graph.

In this section we formulate the underlying algorithm of the two previous approaches as a polyno-
mial generator recursively defined on acyclic dependency graphs, which we call Msum. We then
introduce a new polynomial generator, Nsum, that does the recursion in the opposite direction (i.e.
“top-down”), and experimentally show that it significantly dominates the bottom-up approach in
terms of tightness. We then show that bounds computed by Nsum are the best any function that is
a sound bound on the diameter can compute using abstractions’ recurrence diameters and depen-
dencies, given that the dependencies are acyclic.

The Bottom-Up Approach

Before we model the bottom-up calculation, we need to define the concepts of ancestors and
leaves.

Definition 14 (Leaves). We define the set of leaves leaves(GVS) to contain those vertices of GVS
from which there are no outgoing edges.

Definition 15 (Ancestors). We write ancestors(vs) to denote the set of ancestor vertices of vs in
GVS. It is the set {vs0 | vs0 ∈ GVS ∧ vs0→+vs}, where→+ is the transitive closure of→.

§3.5 Using Structural Knowledge for Better Bounds: Acyclic Dependency 25

Definition 16 (Bottom-Up Acyclic Dependency Compositional Bound).

M〈b〉(vs, δ,GVS) = b(δ�vs) + (1 + b(δ�vs))
∑

a∈ancestors(vs)

M〈b〉(δ�a)

Then, let Msum〈b〉(δ,GVS) =
∑

vs∈leaves(GVS) M〈b〉(vs, δ,GVS).

The functional parameter b is used to bound abstract subproblems, GVS is a lifted dependency
graph of δ used to identify abstract subproblems, δ is the system of interest. Valid instantiations
of b are the recurrence diameter (used in Baumgartner et al. (2002)) and the size of state space
2|D(δ)| (used in Rintanen and Gretton (2013)). Also, Msum is recursively defined on the structure
of GVS, and accordingly it is only well-defined if GVS is a DAG. In Baumgartner et al. (2002), it
was shown that Msum〈rd〉 can be used to upper-bound the diameter, in case δ has an acyclic lifted
dependency graph. A restatement of Theorem 1 from Baumgartner et al. (2002) is as follows.

Theorem 7. For any factored representation δ with acyclic lifted dependency graph AVS, d(δ) ≤
Msum〈rd〉(δ, AVS).

The following example illustrates the operation of Msum.

Example 8. Figure 3.8 shows a lifted dependency DAG, AVS, of some factored system δ. Since
AVS is a DAG, this implies that for 1 ≤ i ≤ 4, the set of variables vs i is closed under mutual
dependency, and D(δ) =

⋃
vs i. Given b, and letting bi be b(δ�vsi) and M〈b〉(vs i, δ, AVS) = Mi,

we have

(i) M1 = b1,

(ii) M2 = b2,

(iii) M3 = b3 + M1 + b3M1 = b3 + b1 + b1b3,

(iv) M4 = b4 + (1 + b4)(M1 + M2 + M3)

= 2b1 + b2 + b3 + b4 + b1b3 + 2b1b4 + b2b4 + b3b4 + b1b3b4.

Since vs4 is the only leaf in the dependency graph, the polynomial evalated by Msum will be M4.

The previous example should make it clear that Msum can be viewed as a polynomial generating
function recursively defined on a DAG. The terms of the polynomial Msum returns depends only
on the structure of AVS (i.e. the number of vertices and their connectivity), regardless of δ or the
values of b on different projections. However, Msum has a problem: it repeatedly adds the terms
M〈b〉(vs i) as many times as there are children for vs i. Except for the first M〈b〉(vs i) term it adds,
all those terms are redundant as we show in the next section. We also note that the function Msum

is monotonic: for a bounding function b1 that is an upper bound on another bounding function b2,
Msum〈b2〉(δ, AVS) ≤ Msum〈b1〉(δ, AVS) holds.

The Top-Down Approach

In this section we define a new polynomial generator. The motivation in defining this polynomial
generator is to avoid redundant terms as highlighted in the previous section. We shall also see that
it is easy to formally verify it as an upper bound on the diameter.

26 Compositional Upper-Bounding of Topological Properties

Definition 17 (Acyclic Dependency Compositional Bound).

N〈b〉(vs, δ,GVS) = b(δ�vs)(1 +
∑

c∈childrenGVS (vs)

N〈b〉(c, δ,GVS))

Then, let Nsum〈b〉(δ,GVS) =
∑

vs∈GVS N〈b〉(vs, δ,GVS).

Nsum is recursively defined on the structure of GVS, and accordingly it is only well-defined if
GVS is a DAG. We note that Nsum is monotonic: for a bounding function b1 that is an upper bound
on another bounding function b2, Nsum〈b2〉(δ, AVS) ≤ Nsum〈b1〉(δ, AVS) holds, for an acyclic
dependency graph AVS.

Theorem 8. For any factored representation δ with an acyclic lifted dependency graph AVS,
d(δ) ≤ Nsum〈rd〉(δ, AVS).

We postpone the proof of this theorem to the next section. However, we now compare the
bounds computed by Nsum〈b〉 with the ones computed using Msum〈b〉.

Example 9. Again we refer to AVS from Figure 3.8. Given a topological property b, and letting
b(δ�vsi) be bi and N〈b〉(vs i, δ, AVS) = Ni, we have

(i) N4 = b4,

(ii) N3 = b3 + b3b4,

(iii) N2 = b2 + b2b4,

(iv) N1 = b1 + b1N3 + b1N4 = b1 + b1b3 + b1b3b4 + b1b4, and the polynomial returned by Nsum

is

(v) Nsum〈b〉(δ, AVS) = b1 + b2 + b3 + b4 + b1b3 + b1b4 + b2b4 + b3b4 + b1b3b4.

The value of Msum〈b〉 has an extra b1 term and an extra b1b4 term, over that of Nsum〈b〉. This is
because Msum〈b〉 counts every ancestor vertex in the lifted dependency graph as many times as the
size of its posterity. We found this phenomenon to be highly prevalent in standard benchmarks,
where Nsum substantially outperforms Msum in terms of the tightness of the computed bounds.
Figure 3.9 shows the computed bounds of Nsum〈b〉 versus Msum〈b〉 with the function 2|D(δ)|−1 as
the base function for a 1030 different Ineternational Planning Competition benchmarks. It shows
that Msum〈b〉 computes looser bounds as it repeats counting the ancestor vertices unnecessarily.

Theoretical Guarantees on Nsum〈rd〉 as a Bound on the Diameter

The next theorem shows that for every dependency graph, there is a system where the diameter
lower bounds Nsum〈rd〉. This, together with Theorem 8 that states that Nsum〈rd〉 upper-bounds
the diameter, show that the top-down algorithm is tight and cannot be improved.

Theorem 9. For any N-DAG AN, there is a factored system δ with a lifted dependency DAG, AVS,
such that (i) Nsum〈rd〉(δ, AVS) ≤ d(δ), and (ii) AN = RLAVSM, where R(vs) = rd(δ�vs).

We use an “inverted flower” system, defined as follows.

4i
l,m =


⋃

1≤j<k≤l{(xij , xik), (xik, xij)} if m = 1⋃
2≤j≤l+1{(xi1, xij), (xij , xi1)} if m = 2

γim−2 ∪
⋃

0≤j≤l−1{(xim−1, x
i
m+j), (x

i
m+j , x

i
1)} o/w

§3.5 Using Structural Knowledge for Better Bounds: Acyclic Dependency 27

4i
l,m is a system whose state space contains a simple path with m− 1 states and l additional states

(petals). Each petal has an outgoing edge to the first state in the path and an incoming edge from
the last state in the path. For

4i
l,m we denote the shortest action sequence that joins xia with xib,

with
→
π
i

a7→b, for m ≤ a, b ≤ m+ l − 1. Since for m ≤ a, b ≤ m+ l − 1 the length of
→
π
i

a7→b will
always be m, we have d(

4i
l,m) = rd(

4i
l,m) = m.

Proof. Our proof is constructive. The first step of is to construct an inverted flower relabel for
every u1 ∈ V (AN), so we denote by

4u1 the inverted flower

4u1
pu1 ,AN(u1). The relabelling inverted

flowers are constructed with two properties in mind. Firstly, the recurrence diameter of an inverted
flower label of u1 matches AN(u1), the original label of u1. Secondly, the number of petals, pu1 ,
in the inverted flower labelling a vertex u1 must be two more than the actions in all of inverted
flowers labelling the children of u1, i.e. pu1 = 2 +

∑
u2∈childrenAN (u1) |

4u2 |. Having that many
petals is crucial to the proof: we add a different petal as a precondition in every action in the
inverted flowers of the children of a vertex u1. This is to necessitate the execution of AN(u1)

actions from

4u1 between every action from the inverted lotus associated with every child of u1,
so that the constructed system has the required diameter.

The next step in this construction is to build the required witness system δ. If we follow the
same strategy as the ones in the constructions of Theorem 1 or Theorem 2, δ can be formed by
the union of all the inverted flowers and then redundant actions with superfluous preconditions
can be added to δ, to give the required dependencies. This would guarantee that δ satisfies con-
dition ii. However, δ has to be constructed such that there is an action sequence

→
π ∈ δ∗ that is

Nsum〈rd〉(δ, AVS) actions long, and such that there are two states x1 ∈ U(δ) and x2 = ex(
→
π, x1),

with no action sequence shorter than
→
π being able to reach x2 from x1. To guarantee this, actions

with preconditions added (for the purpose of adding dependencies) must replace the original ac-
tions, they cannot be redundant. Additionally, those preconditions have to guarantee that in

→
π ,

between every pair of actions from an inverted flower associated with a vertex u1, there needs to
be as many action sequences as there are parents to u1, each of which is as long as the recurrence
diameter of the corresponding parent’s inverted flower. To achieve that δ and

→
π are constructed by

Algorithm 3.

Algorithm 3:
→
π := []; δ :=

⋃
u1∈V (AN)(

4u1)

// Loop over V (AN) in reverse topological order
for u1 ∈ lN
i := AN(u1); children :=

⋃
u2∈childrenAN (u1)

4u2

// Loop over every action in
→
π , in execution order

for (p, e) ∈ →π
// check if the current action belongs to a child of u1

if D(e) ∩ D(children) 6= ∅
// Add preconditions to ensure it needs

→
π i 7→i+1

δ := δ \ {(p, e)}; δ := δ ∪ {(xu1i+1] p, e)}
// Add

→
π i 7→i+1 before7(p, e);

→
π := pre(

→
π, (p, e))_

→
π
v

i 7→i+1_(p, e) :: suf(
→
π, (p, e))

// Increment the petal counter
i := i+ 1

// Add an action sequence to visit one more petal
→
π :=

→
π_

→
π
u1
i 7→i+1

28 Compositional Upper-Bounding of Topological Properties

We now show that δ satisfies requirement i. Consider two states, a state at which every inverted
flower is at the first petal x1 =

⊎
u1∈V (AN) x

u1
AN(u1) and a state at which every inverted flower is

at the last petal x2 =
⊎
v∈V (AVS) x

u1
AN(u1)+pu1+1. By construction, ex(x1,

→
π) = x2. Since every

action in
→
π had a different petal added as a precondition from every parent, for any

→
π
′
∈ δ∗ that

is shorter than
→
π , ex(x1,

→
π
′
) 6= →

π . Accordingly the diameter of δ is at least |→π |. Since for an
inverted flower

4u1 , the length of
→
π
u1
a7→b is rd(

4u1) = AN(u1), then the length of
→
π is at least

Nsum〈rd〉(δ, AVS), and δ satisfies conclusion i.
We now show that δ satisfies requirement ii. Consider a relabelling, AVS, of AN, where every

vertex u1 is relabelled by D(

4u1), the domain of the inverted flower 4u1 associated with the vertex.
Since for a vertex u1, actions added from

4u1 to δ had preconditions added to them from the petals
of inverted flowers labelling all the parents of u1 and only the parents, edges of AVS represent
dependencies of δ. Accordingly Avs is a lifted dependency DAG of δ. Also since δ�D(

4u1)
=

4u1 ,
and GN is a relabelling of GVS, then GN = RLGVSM.

Example 10. For the N-DAG shown in Figure 3.4a, a reverse topological ordering of the vertices
in this graph is the list [u2;u3;u1], where leaves u1 and u3 come first. We first build an inverted
flower system to label each of the vertices (Figures 3.11a-3.11c). As u2 is a leaf, pu2 = 0,
so we construct an inverted flower

4u2
2,3 with two petals and a path with two states. Concretely,4u2

2,3 = {(xu21 , xu22), (xu22 , xu23), (xu22 , xu24), (xu23 , xu21), (xu24 , xu21)}. The states are xu21 = {v4, v5},
xu22 = {v4, v5}, xu23 = {v4, v5} (the first petal), xu24 = {v4, v5} (the second petal). For u3 we
construct

4u3
2,2 = {(xu31 , xu33), (xu31 , xu32), (xu33 , xu31), (xu32 , xu31)}. The states are xu31 = {v6, v7},

xu32 = {v6, v7} (the first petal), and xu33 = {v6, v7} (the second petal). For the root vertex u1,
pu1 = 7, as inverted flowers labelling its children have 5 actions, so

4u1
7,2 will have 7 petals.

Concretely,

4u1
7,2 =

⋃
{{(xu11 , xu1j), (xu1j , x

u1
1)} | 2 ≤ j ≤ 8}. The states are xu11 = {v1, v2, v3},

xu12 = {v1, v2, v3}, xu13 = {v1, v2, v3}, xu14 = {v1, v2, v3}, xu15 = {v1, v2, v3}, xu16 = {v1, v2, v3},
xu17 = {v1, v2, v3}, and xu18 = {v1, v2, v3}.

After constructing the inverted flowers we construct the system δ and the action sequence
→
π . Based on Algorithm 3, we start from the leaves, and initially

→
π = [] and δ =

4u2
2,3 ∪4u3

2,2 ∪

4u1
7,2. u2 has no children, i.e. children = ∅, so we skip the inner for-loop and con-

catenate the shortest action sequence that reaches the second petal from the first one in the
inverted flower associated with u2, so

→
π =

→
π
u2
3 7→4 = [(xu23 , xu21); (xu21 , xu22); (xu22 , xu24)]. Sim-

ilarly, since u3 has no children, we concatenate
→
π
u3
1 7→2 to

→
π , so

→
π =

→
π
u2
37→4_

→
π
u3
27→3 =

[(xu23 , xu21); (xu21 , xu22); (xu22 , xu24); (xu32 , xu31); (xu31 , xu33)].
For u1, children =

4u2
2,3 ∪

4u3
2,2, which means that the inner for-loop executes, iterating

over each action in
→
π . The first action in

→
π , (xu23 , xu21) comes from the inverted flower

labelling u2, which is a child of u1. Accordingly, we remove (xu23 , xu21) from δ, add to its
precondition the second petal (xu13) in the inverted flower labelling u1, which makes the
action (xu23] x

u1
3 , xu21) and add the augmented action to δ. Then we add before that action,

the shortest action sequence joining the first and the second petals in the inverted flower of
u1, so

→
π =

→
π
u1
27→3_[(xu13] xu23 , xu21); (xu21 , xu22); (xu22 , xu24); (xu32 , xu31); (xu31 , xu33)]. This

is repeated for the remaining actions, so
→
π =

→
π
u1
27→3_[(xu13] x

u2
3 , xu21)]_

→
π
u1
37→4_[(xu14]

xu21 , xu22)]_
→
π
u1
47→5_[(xu15] x

u2
2 , xu24)]_

→
π
u1
57→6_[(xu16] x

u3
2 , xu31)]_

→
π
u1
67→7_[(xu17] x

u3
1 , xu33)].

All the modified actions were replaced in δ with themselves, but with the added precon-
ditions. After the inner for loop ends,

→
π
u1
7 7→8 is concatenated, so

→
π =

→
π
u1
27→3_[(xu13]

7For lists l, l1, and l3, if l = l1_a :: l2, then pre(l, a) denotes l1 and suf(l, a) denotes l2.

§3.6 The Sublist Diameter 29

xu23 , xu21)]_
→
π
u1
37→4_[(xu14] xu21 , xu22)]_

→
π
u1
47→5_[(xu15] xu22 , xu24)]_

→
π
u1
57→6_[(xu16]

xu32 , xu31)]_
→
π
u1
67→7_[(xu17] x

u3
1 , xu33)]_

→
π
u1
77→8.

Consider the states x1 = xu12] x
u2
3] x

u3
2 = {v1, v2, v3, v4, v5, v6, v7} and x2 = xu18] x

u2
4]

xu33 = {v1, v2, v3, v4, v5, v6, v7}. ex(x1,
→
π) = x2, and the path traversed by

→
π in G(δ) is shown

in Figure 3.11e, There is not an action sequence in δ∗ shorter than
→
π (17) that can reach x2

from x1. Accordingly the diameter of δ is at least 17. Letting N(vs) = N〈rd〉(vs, δ, AVS), we
have N({v4, v5}) = rd(δ�{v4,v5}) = rd(

4u2
2,3) = 3, N({v4, v5}) = rd(δ�{v6,v7}) = rd(

4u3
2,2) = 2,

N({v1, v2, v3}) = rd(δ�{v1,v2,v3})(1 + N({v4, v5}) + N({v6, v7})) = 2(1 + 3 + 2) = 12, and
Nsum〈rd〉(δ, AVS) = N({v1, v2, v3})+
N({v4, v5}) + N({v6, v7}) = 12 + 3 + 2 = 17, so Nsum〈rd〉(δ, AVS) ≤ d(δ).

The domain of δ is {v1, v2, v3, v4, v5, v6, v7} and a partition of it is
{D(

4u1
7,2),D(

4u2
2,3),D(

4u3
2,2)} = {{v1, v2, v3}, {v4, v5}, {v6, v7}}. A lifted dependency graph

of δ, AVS, has the following labels: AVS(u1) = {v1, v2, v3}, AVS(u2) = {v4, v5}, and
AVS(u3) = {v6, v7} (shown in Figure 3.11d). It should be clear that AVS = DLA∆M.

3.6 The Sublist Diameter

In this section we prove the validity of Nsum〈rd〉 as an upper bound on the diameter in the case of
an acyclic dependency graph. To do so we define the sublist diameter.

Definition 18 (Sublist Diameter). Recall that a list l′ is a sublist of l, written l′ �· l, iff all the
members of l′ occur in the same order in l. The sublist diameter, `(δ), is the length of the longest
shortest equivalent sublist to any execution

→
π ∈ δ∗ starting at any state x ∈ U(δ). Formally,

`(δ) = max
x∈U(δ)

max
→
π∈δ∗

min{|→π
′
| | →π

′
�· →π ∧ ex(x,

→
π) = ex(x,

→
π
′
)}

It should be clear that the sublist diameter is an upper bound on the diameter and a lower
bound on the recurrence diameter. We prove that it can be compositionally bounded by Nsum〈`〉,
Theorem 8 then follows. We also investigate the usage of the sublist diameter to compositionally
upper-bound the diameter instead of using the recurence diameter (i.e. using Nsum〈`〉 instead of
Nsum〈rd〉). This can be very advantageous, since we show that the sublist diameter is equal to the
diameter in infinitely many systems, where the recurrence diameter is exponentially looser than
the diameter (Theorem 10). However, computing the sublist the diameter is at least as hard as
computing the recurrence diameter, which is NP-hard (Theorem 12).

3.6.1 Compositionally Bounding the Sublist Diameter Under Acyclic Dependency

Lemma 3. For any factored system δ with an acyclic lifted dependency DAG AVS, `(δ) ≤
Nsum〈`〉(δ, AVS).

Proof Summary of Lemma 3. To prove Lemma 3 we use a construction which, given any action
sequence

→
π ∈ δ∗ violating the stated bound and a state s ∈ U(δ), produces a sublist,

→
π
′
, of

→
π

satisfying that bound and ex(s,
→
π) = ex(s,

→
π
′
). The proof is by induction on the structure of

AVS, where we repeatedly consider every set of variables P ∈ AVS and each of its children C ∈
childrenAVS(P), and for each parent child pair we do the following. We first consider the projected
action sequence

→
π�C . From the definition of `, there is a sublist

→
π
′
C �·

→
π�C satisfying |→π

′
C | ≤

`(δ�C). Moreover, this guarantees that
→
π
′
C is equivalent, in terms of the execution outcome, to

30 Compositional Upper-Bounding of Topological Properties

→
π�C . Hereupon, if for an action π = (p, e), e ⊆ vs is true, we call π a vs-action. The stitching
function described in Figure 3.12a is then used to remove the C-actions in

→
π whose projections

on C are not in
→
π
′
C . Thus our construction arrives at the action sequence

→
π
′′

=
→
π
′
C H
C

→
π with

at most `(δ�C) C-actions. Since C ∈ childrenAVS(P), then C 6→ P and accordingly, actions
with variables from C in their effects never include P variables in their effects. Accordingly,
ex(s,

→
π) = ex(s,

→
π
′′
), and in

→
π
′′
, there will be a list,

→
πP , of only P -actions between every

consecutive C-actions. However, again, because of how ` is defined, there is a
→
π
′
P �·

→
πP ,

whose execution outcome is the same as
→
πP and whose length is no more than `(δ�P). Repeating

this for all sequences of only P -actions completes our construction.

The above construction and the usage of the stitching function is illustrated in the following ex-
ample.

Example 11. Consider the following factored system, whose dependency graph is shown in Fig-
ure 3.12b. {

π1 = (∅, {v3}), π2 = ({v3}, {v4}), π3 = ({v3}, {v1}), π4 = ({v3}, {v2}),
π5 = ({v4}, {v1}), π6 = ({v2, v4}, {v5}), π7 = ({v3}, {v4, v5})

}
D(δ) = c ∪ p, where c = {v1, v4, v5} are called the “child” variables, and p = {v2, v3},

and c 6→ p are called the “parent” variables. In δ, the actions π2, π3, π5, π6, π7 are c-
actions, and π1, π4 are p-actions. An action sequence

→
π ∈ δ∗ is [π1;π1;π2;π3; π4;π4;π5;π6]

that reaches the state {v1, v2, v3, v4, v5} from {v1, v2, v3, v4, v5}. When
→
π is projected on c it be-

comes [π2�c;π3�c;π5�c;π6�c], which is in (∗δ�c). A shorter action sequence,
→
π c, achieving the

same result as
→
π�c is [π2�c;π6�c]. Since

→
π c is a sublist of

→
π�c, we can use the stitching function

to obtain a shorter action sequence in δ∗ that reaches the same state as
→
π . In this case,

→
π cH

c

→
π is

[π1;π1;π2;π4;π4;π6]. The second step is to contract the pure p segments which are [π1;π1] and
[π4;π4], which are contracted to [π1] and [π4], respectively. The final constructed action sequence
is [π1;π2;π4;π6], which achieves the same state as

→
π .

Theorem 8 follows directly from Lemma 3 and the fact that the sublist diameter is both: an
upper bound on the diameter and a lower bound on the recurrence diameter.

Also because the recurrence dimater upper bounds the sublist diameter, and the sublist diame-
ter upper-bounds the diameter, and since Nsum is monotonic, the following lemma can be derived
from Theorem 9 and Lemma 3.

Lemma 4. For any N-DAG (a DAG whose vertices are labelled with numbers), AN, there is a δ
that has a lifted dependency DAG, AVS, such that (i) DN = LLAVSM, where L(vs) = `(δ�vs) (i.e.
DN is a relabelling of AVS, where every vertex labelled by vs in AVS, is relabelled by the sublist
diameter of the projection δ�vs), and (ii) `(δ) = Nsum〈`〉(δ, AVS).

3.6.2 The Sublist Diameter as a Compositional Upper Bound on the Diameter

Initially we defined the sublist diameter as a tool for proving Theorem 8. However, Lemma 3
shows that we can use the sublist diameter (instead of the recurrence diameter) as a base case
function with the top-down approach to upper-bound the diameter. In this section we compare
the sublist diameter to the recurrence diameter as a base case function for upper-bounding the
diameter. We compare two aspects: their tightness as bounds, and the hardness of computing each
of them.

§3.6 The Sublist Diameter 31

Tightness of the Sublist Diameter

In this section we show that in addition to being a lower bound on the recurrence diameter, the
sublist diameter can be exponentially smaller than the recurrence diameter. To do that, we exploit
a rather interesting insight: the value of sublist diameter depends on the factored representation:
two factored representations of the same state space can have different sublist diameters. Indeed
minimising (or factoring) the size of a factored representation (i.e. the number of actions) used to
represent the same system can minimise the sublist diameter. This is in contrast to the diameter, the
recurrence diameter and the traversal diameter, which are agnostic to the factored representation:
they only depend on the state space of the system. The following example demonstrates using
factoring to reduce the sublist diameter.

Example 12. Consider δ�{v1,v2} from Example 2 and δ1 =

{k1�{v1,v2}, k2�{v1,v2}, k3�{v1,v2}, k4�{v1,v2}}. δ1 is a factoring of δ�{v1,v2} and accord-
ingly, G(δ1) and G(δ�{v1,v2}) are identical. Accordingly d(δ1) = d(δ�{v1,v2}) = 1, and

rd(δ1) = rd(δ�{v1,v2}) = 3. `(δ1) = 1, because for any non empty action sequence
→
π ∈ δ1

∗, the

last action π in
→
π reaches the same state as

→
π , and [π] �· →π . In contrast, `(δ�{v1,v2}) = 3, since

no shorter sublist of the action sequence [p1�{v1,v2}; p2�{v1,v2}; p3�{v1,v2}] starts at {v1, v2} and
results in {v1, v2}.

We now formally demonstrate the utility of factoring to reduce the sublist diameter.

Definition 19 (Factoring). Factored representation δ1 is a factoring of representation δ2 iff all the
following is true:

(i) D(δ1) ⊆ D(δ2)

(ii) |δ1| ≤ |δ2|

(iii) ∀π2 ∈ δ2, x ∈ U(δ2).∃π1 ∈ δ1. ex(x, π1) = ex(x, π2)

(iv) there is a function f : δ1 ⇒ 2δ2 , where

(a) ∀(p1, e1) ∈ δ1, (p2, e2) ∈ f(p1, e1).p1 ⊆ p2,

(b) ∀π1 ∈ δ1, x ∈ U(δ2).∃π2 ∈ f(π1).ex(x, π1) = ex(x, π2), and

(c) ∀π1 ∈ δ1.f(π1) 6= ∅

Proposition 4. If δ1 is a factoring of δ2 then the largest connected components of G(δ1) and G(δ2)

are isomorphic.

Corollary 1. If δ1 is a factoring of δ2 then d(δ1) = d(δ2) and rd(δ1) = rd(δ2).

Lemma 5. There are infinitely many factored systems that have factorings with exponentially
smaller sublist diameters, that are equal to the diameter.

Before we begin our proof, let Ki
n = {(∅, xij) | 1 ≤ j ≤ n + 1}, i.e. a factored system with

the only non-singleton component of its state space being a clique with n+ 1 states.

Proof. We show that for every n ∈ N there is a system whose sublist diameter can be reduced from
n to 1 through factoring. Consider the factored representations K = K1

n, and γ = γ1
n. `(K) = 1

and `(γ) = n hold. Note that since in the definition of K and γ we used the same superscript,
D(K) = D(γ) = vs .(*) Accordingly the state space of K ∪ γ will have only one non-singleton
component that is a clique of order n + 1. However, although K ∪ γ is a factored system whose

32 Compositional Upper-Bounding of Topological Properties

state space is a clique, its sublist diameter will be n, because there is not a shorter sublist of the
action sequence [(x1

1, x
1
2); (x1

2, x
1
3); ..; (x1

n, x
1
n+1)] that can reach the state x1

n+1, starting from the
state x1

1. Finally, from (*) and since γ does not add any more edges in the state space of K, then
K is a factoring of K ∪ γ, which finishes our proof.

Theorem 10. There are infinitely many factored systems whose sublist diameter is (i) equal to their
diameter, and (ii) exponentially smaller (in the number of state variables) than their recurrence di-
ameter. There are also infinitely many factored systems whose sublist diameter is (i) exponentially
larger (in the number of state variables) than their diameter, and (ii) equal to their recurrence
diameter.

This theorem follows immediately from Corollary 1 and Lemma 5. Furthermore we show that
factoring a representation can only reduce the value of the sublist diameter.

Theorem 11. If δ1 is a factoring of δ2 then `(δ1) ≤ `(δ2).

Proof. We prove the theorem by showing that for any x ∈ U(δ1) and
→
π ∈ δ1

∗ there is a sublist of
→
π ,
→
π
′
, such that ex(s,

→
π
′
) = ex(s,

→
π) and |→π

′
| ≤ `(δ2). Using the mapping f from Definition 19,

there must be an action sequence
→
π 2 ∈ δ2

∗, such that ex(x,
→
π 2) = ex(x,

→
π). From Definition 18

we then obtain a sublist,
→
π
′
2, of

→
π 2 whose length is bounded by `(δ2) and, such that ex(x,

→
π
′
2) =

ex(x,
→
π 2). We reverse the mapping of actions to transform

→
π
′
2 into a sublist

→
π
′

of
→
π . From

Definition 19, ex(x,
→
π) = ex(x,

→
π
′
), but |→π

′
| = |→π

′
2| ≤ `(δ2), which finishes our proof.

The Complexity of Computing the Sublist Diameter

Theorem 12. Computing the Sublist Diameter is NP-hard.

Proof. We prove this theorem by showing that for any digraph G, one can compute the length of
the longest path in G by computing the sublist diameter of a system, δ, that can be constructed in
polynomial time from G. Let D = {v1, v2, .., vdlog2 |V (G)|e} and let 2D denote the set of all states
representable by D. Since |V (G)| ≤ 2|D|, then there is an injective function x : V (G) ⇒ 2D.
Consider the system δ = {(x(u1), x(u2)) | (u1, u2) ∈ E(G)}. It should be clear that the largest
connected component in G(δ) is isomorphic to G and accordingly the length of the longest path
in G is the same as the length of the longest path in G(δ) which is equal to rd(δ). Now observe
that for every (p, e) ∈ δ, the precondition and the effect are both complete assignments of D, i.e.
p ∈ U(δ) and e ∈ U(δ). Accordingly every action in δ represents exactly one edge from G. From
that we have rd(δ) = `(δ), which finishes our proof.

3.7 Exploiting State Space Acyclicity

The practical utility of dependency graph based decompositions (like Nsum) provides a good mo-
tivation to pursue other structures, like state space acyclicity. State space acyclicity is independent
of acyclicity in variable dependency. Thus, methods previously developed cannot be used to ex-
ploit the former in compositional upper-bounding. We demonstrate this using the well-studied
hotel key protocol as a case-study.

§3.7 Exploiting State Space Acyclicity 33

3.7.1 Hotel Key Protocol

We now consider the hotel key protocol from Jackson (2006). Reasoning about safe and unsafe
versions of this protocol is challenging for state-of-the-art AI planners and model-checkers. For
example, a version of the protocol was shown unsafe for an instance with 1 room, 2 guests and 4

keys using a counterexample generator in Blanchette and Nipkow (2010). The problem becomes
more challenging for the safe version of the protocol, where the only feasible approach is using
interactive theorem provers, as in Nipkow (2006).

We describe the factored transition system corresponding to that protocol. The system models
a hotel with R rooms, G guests, and K keys per room, which guests can use to enter rooms (Fig-
ure 3.13 shows an example with R = 2, G = 2 and K = 3). The state characterising propositions
are: (i) lkr,k, reception last issued key k for room r, for 0 < r ≤ R and (r − 1)K < k ≤ rK;
(ii) ckr,k, room r can be accessed using key k, for 0 < r ≤ R and (r − 1)k < k ≤ rK;
(iii) gkg,k, guest g has key k, for 0 < g ≤ G, 0 < k ≤ RK; and (iv) sr, is an auxiliary variable
that means that room r is “safely” delivered to some guest. The protocol actions are as follows:
(i) guest g can check-in to room r, receiving key k—({lkr,k1}, {gkg,k2 ,lkr,k2 ,lkr,k1 ,sr});
and (ii) where room r was previously entered using key k, guest g can enter room r using key
k′—({gkg,k′ ,lkr,k}, {ckr,k′ ,ckr,k,sr}). Thus, guests can retain keys indefinitely, and there is
no direct communication between rooms and reception.

For completeness, we note that this protocol was formulated in the context of checking safety
properties. Safety is violated only if a guest enters a room occupied by another guest. Formally,
the safety of this protocol is checked by querying if there exists a room r, guest g and keys k 6= k′,
so that lkr,k′ ∧ ckr,k ∧ gkg,k′ ∧ sr. The initial state asserts that guests possess no keys, and the
reception issued the first key for each room, and each room opens with its first key. Formally, this
is represented by asserting lkr,(r−1)K ∧ ckr,(r−1)K is true for 1 ≤ r ≤ R, (r − 1)K < k ≤ rK,
and that all other state variables are false.

We adopt some shorthand notations in order to provide examples of concepts in terms of
the hotel key protocol. A variable name is written in upper case to refer to a particular assign-
ment, where the only variable that is true is given by the indices. For example, the assignment
{ck1,1,ck1,2,ck1,3}—indicating room 1 can be accessed using key 2—is indicated by writing
CK1,2. We refer to sets of variables by omitting an index term. For example, lk1 indicates the
variables {lk1,i | 1 ≤ i ≤ 3}. The following examples illustrate the concepts of projection and
state variable dependency in the context of the hotel key protocol.

Example 13. Consider the set of variables ROOM1 ≡ lk1 ∪ ck1 ∪ {gk1,2,gk1,3,gk2,2,gk2,3}.
The variables ROOM1 model system state relevant to the 1st hotel room. Figure 3.13c shows the
projected system δ�ROOM1.

Example 14. Figure 3.13b shows a dependency graph associated with the system from Fig-
ure 3.13a. Let ROOM2 ≡ lk2 ∪ ck2 ∪ {gk1,5,gk1,6,gk2,5,gk2,6}. Figure 3.13b depicts two
connected components induced by the sets ROOM1 and ROOM2, respectively. One lifted depen-
dency graph would have exactly two unconnected vertices, one being a contraction of the vertices
from ROOM1, and the other a contraction of those from ROOM2. Due to the disconnected struc-
ture of the dependency graph, intuitively the sum of bounds for δ�ROOM1 and δ�ROOM2 can be used
to upper-bound the diameter of the concrete system.

3.7.2 State Space Acyclicity Compositional Bounding Constructs

To exploit state space acyclicity we formalise it as follows.

34 Compositional Upper-Bounding of Topological Properties

Definition 20 (Acyclic Transition System). δ is acyclic iff ∀x, x′ ∈ U(δ). x 6= x′ then x 6 x′ or
x′ 6 x.

In the next example we show that state space acyclicity is independent of acyclicity in variable
dependency, and thus Nsum or other methods cannot be used to exploit state space acyclicity for
compositional upper-bounding.

Example 15. δ�ck1 is acyclic. For example, no state satisfying CK1,2 can be reached from a state
satisfying CK1,3. Now consider δ�ROOM1 from Example 13. The dependency graph of δ�ROOM1 is
comprised of one strongly connected component (SCC). Thus, acyclicity in the assignments of ck1

cannot be exploited in δ�ROOM1 by analysing its dependency graph.

To be able to exploit state space acyclicity, we now introduce a new abstraction concept:
snapshot. A snapshot models the system when we fix the assignment to a subset of the state
variables, removing actions whose preconditions or effects contradict that assignment.

Definition 21 (Snapshot). We write |X| to denote the cardinality of the set X . For states x and x′,
let agree(x, x′) denote |D(x) ∩ D(x′)| = |x ∩ x′|, i.e. a variable that is in the domains of both x
and x′ has the same assignment in x and x′. For δ and a state x, the snapshot of δ at x is

δ|•x≡ {(p, e) | (p, e) ∈ δ ∧ agree(p, x) ∧ agree(e, x)}�D(δ)\D(x)

Example 16. δ�ROOM1|•CK1,2 is shown in Figure 3.13d.

We now investigate how such acyclicity can be used for bounding. First, let Σ(x) =δ|•x, i.e. it
is a function that maps a state x to the snapshot of δ on that state. Consider a system δ where for
some variables vs we have that δ�vs is acyclic – i.e. the state space of δ�vs forms a directed acyclic
graph. In that case, we define the following version of Smax that operates on acyclic abstraction
state spaces.

Definition 22 (Acyclic System Compositional Bound). For an arbitrary bounding function b and
for a state x ∈ U(δ�vs),

S〈b〉(x, vs, δ) = S〈b〉(x,ΣLG(δ�vs)M)

Then, let Smax〈b〉(vs, δ) = max
x∈U(δ�vs)

S〈b〉(x, vs, δ).

This function returns the longest path in the state space of the projection δ�vs weighted by the
diameters of the snapshots of δ on different states in U(δ). To make this concrete, consider the
following example.

Example 17. Since δ�ck1 is acyclic, and CK1,i ∈ U(δ�ck1), then S〈d〉(CK1,i,ck1, δ) is well-
defined, for i ∈ {1, 2, 3}. Denoting d(δ|•CK1,i) with d1,i and S〈d〉(CK1,i,ck1, δ) with S1,i, we have
S1,3 = d1,3 because succ(CK1,3, δ�ck1) = ∅. We also have S1,2 = d1,2+1+S1,3 = d1,2+1+d1,3

and S1,1 = d1,1 + 1 + S1,2 = d1,1 + 1 + d1,2 + 1 + d1,3 = d1,1 + d1,2 + d1,3 + 2.

Theorem 13. If δ�vs is acyclic and b bounds d, then d(δ) ≤ Smax〈b〉(vs, δ).

Proposition 5. If δ�vs is acyclic and x ∈ U(δ�vs), if x′ ∈ succ(x, δ�vs), then b(δ|•x) + 1 +

S〈b〉(x′, vs, δ) ≤ S〈b〉(x, vs, δ), for a base case function b.

Definition 23 (Subsystem Trace). For a state x, action sequence
→
π , and set of variables vs , let

∂(x,
→
π, vs) be:

∂(x, [], vs) = []

∂(x, π ::
→
π, vs) =

{
x′ :: ∂(x′,

→
π, vs) if x�vs 6= x′�vs

∂(x′,
→
π, vs) otherwise

§3.8 A Practical Algorithm for Upper-Bounding 35

where x′ = ex(x, π).

Proposition 6. For any x,
→
π , and vs , if ∂(x,

→
π, vs) = [] then: (i) x�vs = ex(x,

→
π)�vs and (ii) there

is
→
π
′

where ex(x,
→
π) = ex(x,

→
π
′
) and |→π

′
| ≤ d(δ|•x�vs).

Proposition 7. For two states x and x′, a sequence of states
→
x , a set of variables vs , and an action

sequence
→
π , if ∂(x,

→
π, vs) = x′ ::

→
x , then there are

→
π 1, π and

→
π 2 such that (i)

→
π =

→
π 1_π ::

→
π 2,

(ii) ∂(x,
→
π 1, vs) = [], (iii) ex(ex(x,

→
π 1), π) = x′, and (iv) ex(x′,

→
π 2) = ex(x,

→
π).

Proposition 8. For any x,
→
π 1,

→
π 2, and vs , we have that

∂(x,
→
π 1_

→
π 2, vs) = ∂(x,

→
π 1, vs)_∂(ex(x,

→
π 1),

→
π 2, vs).

Lemma 6. For any δ and vs where δ�vs is acyclic, s ∈ U(δ), and
→
π ∈ δ∗, there is

→
π
′

such that
ex(s,

→
π) = ex(s,

→
π
′
) and |→π

′
| ≤ S〈d〉(s�vs , vs, δ).8

Proof. The proof is by induction on ∂(s,
→
π). The base case, where, ∂(s,

→
π) = [], is trivial. In

the step case we have that ∂(s,
→
π) = s′ ::

→
x and the induction hypothesis: for any s∗ ∈ U(δ),

and
→
π
∗
∈ δ∗ if ∂(s∗,

→
π
∗
) =

→
x then there is

→
π ∗′ where ex(s∗,

→
π
∗
) = ex(s∗,

→
π ∗′) and |→π ∗′| ≤

S〈d〉(s∗�vs).
Since ∂(s,

→
π) = s′ ::

→
x , we have

→
π 1, π and

→
π 2 satisfying the conclusions of Proposition 7.

Based on conclusion i, ii, and iii of Proposition 7 and Proposition 8 we have ∂(s′,
→
π 2) =

→
x .

Accordingly, letting s∗, and
→
π
∗

from the inductive hypothesis be s′, and
→
π 2, respectively, there is

→
π
′
2 such that ex(s′,

→
π 2) = ex(s,

→
π
′
2) and |→π

′
2| ≤ S〈d〉(s′�vs).†

From conclusion ii of Proposition 7 and conclusion ii of Proposition 6 there is
→
π
′
1 where

ex(s,
→
π 1) = ex(s,

→
π
′
1) and |→π

′
1| ≤ d(δ|•s�vs). Letting

→
π
′

=
→
π
′
1#π ::

→
π
′
2, from conclusions iii and

iv of Proposition 7 and † we have ex(s,
→
π) = ex(s,

→
π
′
) and |→π

′
| ≤ d(δ|•s�vs) + 1 + S〈d〉(s′�vs).‡

Lastly, from conclusion i of Proposition 6 and conclusion ii of Proposition 7 we have s�vs =

ex(s,
→
π 1)�vs = ex(s,

→
π
′
1)�vs and accordingly ex(s�vs , π�vs) = s′�vs . Based on that we have

s′�vs ∈ childrenδ�vs (s�vs). Then from Proposition 5 and ‡ we have |→π
′
| ≤ S〈d〉(s�vs).

Theorem 13 follows from Lemma 6 and Definitions 6 and 13.
In closing, it is worth noting that for the above example, the dependency graph of δ�ROOM1 is

comprised of one SCC. Therefore there is no lifted dependency graph providing further decom-
position. Indeed, exploiting acyclicity in dependency between variables alone, one cannot further
decompose the subproblem δ�ROOM1. We were able to achieve a more fine grained decomposition
of that component above, by exploiting state space acyclicity.

3.8 A Practical Algorithm for Upper-Bounding

Theorem 13 suggests the possibility of compositional upper-bounding of the diameter given the
presence of acyclicity in a transition system’s state space. In this section we investigate building
a practical compositional algorithm to upper-bound the diameter based on Theorem 13. One
straightforward approach is given by Algorithm 4.
In PUR, Ω is an oracle that returns a set of strict subsets of D(δ), where ∀vs ∈ Ω(δ).δ�vs is
acyclic. PUR terminates because a snapshot has fewer variables than the concrete system. In
PUR the function UPBND provides upper bounds for the diameters of “base-case” problems – i.e.

8In the rest of this proof we omit the vs and/or δ arguments from ∂(, ,) and S as they do not change.

36 Compositional Upper-Bounding of Topological Properties

Algorithm 4: PUR(δ)

S = min({Smax〈PUR〉(vs, δ) | vs ∈ Ω(δ)} ∪∞)
if S =∞ return UPBND(δ) else return S

problems that are not further decomposed. Given this assumption and Theorem 13, PUR itself
computes valid upper bounds for the diameter of the whole problem.

A main question for a practical implementation of PUR is the choice of Ω. The trivial choice of
all strict subsets ofD(δ) is impractical. A pragmatic solution which we have adopted, is to take the
situation that elements in D(δ) model individual assignments in the SAS+ model generated using
Fast-Downward’s preprocessing step Helmert (2006a). Each element in Ω(δ) then corresponds to
a set of elements from D(δ) that model one multi-valued state variable whose domain transition
graph is acyclic.

A source of intractability in PUR comes from the min operator. For a full evaluation, Smax

is recursively called as many as |Ω(δ)|! times. In practice we only evaluate Smax on one arbi-
trarily chosen element from Ω(δ). Our experimentation never uncovered a problem where a full
evaluation of the min, where computationally feasible, produced a better bound. A second source
of computational expense comes from the definition of Smax: PUR can be recursively called a
number of times that is linear in the size of the state space of δ. This happens if Ω(δ) is a parti-
tion of D(δ). Although this worst case scenario is contrived, in practice Ω(δ) can cover sufficient
elements from D(δ) to render PUR impractical. This is demonstrated in the following example.

Example 18. Taking D(δ) associated with the hotel key protocol example, the Fast-Downward
preprocessor Helmert (2006a) identifies partition:

ck1,ck2,lk1,lk2,

{gk1,2}, {gk1,3}, {gk1,5}, {gk1,6},
{gk2,2}, {gk2,3}, {gk2,5}, {gk2,6},
{s1}, {s2}


as SAS+ variable assignments. Let Ω(δ) denote that set, excluding {s1} and {s2}. Note,
∀vs ∈ Ω(δ) we have that δ�vs is acyclic. Consequently, we have that PUR(δ) evaluates after

Πvs∈Ω(δ)|vs|,i.e. 34 = 81, calls to Smax.

3.8.1 Hybrid Algorithm

We have just observed a situation where PUR can exhibit a runtime that is linear in the size of the
state space. That is favourable compared to exact calculations of diameter, which in our opening
remarks we noted to have worse-than-quadratic runtime. Nevertheless this is unacceptable in our
factored setting, and we now seek to alleviate this computational burden by applying Smax to
abstract sub-systems obtained using projections that motivated Definition 17. Such abstractions
can be significantly smaller than the concrete systems, thus motivating a hybrid approach that can
exponentially reduce bound computation times.

Example 19. Consider applying the approach outlined in Example 14 to compute PUR only on
the abstractions δ�ROOM1 and δ�ROOM2. PUR(δ�ROOM1) can be evaluated in Πvs∈Ω(δ�ROOM1)|vs|
calls to Smax, where Ω(δ�ROOM1)={ck1,lk1, {gk1,2}, {gk1,3}, {gk2,2}, {gk2,3}}. The same
observation can be made for the evaluation time of PUR(δ�ROOM2). Thus the product expression
in Example 18 is split into a sum if PUR is called on projections.

§3.9 Empirical Evaluations 37

We now give an upper-bounding algorithm, HYB, that combines exploitation of acyclic vari-
able dependency with exploitation of acyclicity in state spaces.

Algorithm 5: HYB(δ)

Compute the dependency graph GD(δ) of δ and its SCCs
Compute the lifted dependency graph GVS
if 2 ≤ |GVS.V | return Nsum〈HYB〉(δ,GVS)
else if Ω(δ) 6= ∅ return Smax〈HYB〉(ch(Ω(δ)), δ)
else return UPBND(δ)

In HYB, ch is an arbitrary choice function. Note that in HYB, Smax is only applied to the given
transition system δ if there is no non-trivial projection (i.e.if GD(δ) has one SCC), and UPBND

is applied only to base-cases. Also note that GD(δ) is constructed and analysed with every recur-
sive call to HYB, as snapshotting in earlier calls can remove variable dependencies as a result of
removing actions, leading to the breaking of the SCCs in GD(δ), as shown in Example 20.

Example 20. As shown in Figure 3.13b, the dependency graph of δ�ROOM1 has a single SCC, and
thus not susceptible to dependency analysis. Taking a snapshot of δ�ROOM1 at the assignment CK1,2

yields a system with one SCC in its dependency graph as well, as shown in Figure 3.13e. However,
taking the snapshot of δ�ROOM1|•CK1,2 at the assignment {lk1,1,lk1,2,lk1,3}, denoted by LK1,2,
yields a system with an acyclic dependency graph as shown in Figure 3.13f.

We prove HYB is sound by proving it is sound for as tight a base function as possible. Then
soundness for using UPBND as a base function follows. As discussed above, d cannot be used,
because Nsum〈d〉 is not a valid upper bound on d. However, using ` as a base-case function
is sound. To prove that, we derive an analogue of Theorem 13 for `, where Smax〈`〉(vs, δ) =

Smax〈`〉(ΣLG(δ�vs)M).

Theorem 14. If δ�vs is acyclic and b bounds `, then `(δ) ≤ Smax〈b〉(vs, δ).

This theorem follows from an argument analogous to that provided for Theorem 13, taking ` to
be d. Using this theorem, and Lemma 3, the validity of HYB as an upper bound on ` (and
accordingly, the diameter) follows.

Proposition 9. If UPBND bounds `, then `(δ) ≤ HYB(δ).

3.9 Empirical Evaluations

We first discuss the practicalities of implementing HYB. Following Rintanen and Gretton (2013),
we take a base-case function, UPBND, which gives the cardinality of the state space. This choice is
pragmatic, taken in light of the fact that computation of alternatives, such as recurrence and sublist
diameters, is NP-hard. To optimise computing Nsum and Smax, we use memoisation, where we
compute N or S once for every projection or snapshot, respectively, and store it in a look-up
table. This reduced the bound computation time by 70% on average. Our evaluation considers
problems from previous International Planning Competitions (IPC), and the unsolvablity IPC, and
open Qualitative Preference Rovers benchmarks from IPC2006. Below, the latter are referred to
as NEWOPEN.

38 Compositional Upper-Bounding of Topological Properties

3.9.1 Quality of HYB Bounds

Two measurements related to a compositional upper-bounding algorithm are indicative of its qual-
ity. First, we seek an indication of the degree of decompositionality provided by the algorithm. An
indication is provided by comparing the size of the domain of the concrete problem—i.e. |D(δ)|—
with that of the largest base-case. A strong decomposition is indicated when the domain of the
base-case is small relative to the concrete problem. Second, we seek an approach that is able to
produce bounds that grow sub-exponentiallly with the size of the problem, when they exist. Thus,
we measure how the upper bounds scale in domains as the size of the problem instances grow. If
the bounds scale gracefully, this indicates an effective compositional approach.

We report our measurements of the performance of HYB in these terms. Our experiments
were conducted on a uniform cluster with time and memory limits of 30minutes and 4GB, re-
spectively. Figure 3.14b shows the domain size of the largest base-case compared to the size of
the concrete problem. IPC domains with instances remarkably susceptible to decomposition by
HYB are: ROVERS (both solvable and unsolvable), STORAGE, TPP (both solvable and unsolvable),
LOGISTICS, NEWOPEN, NOMYSTERY (both solvable and over-subscribed), UNSOLVABLE MYS-
TERY, VISITALL, SATELLITES, ZENO TRAVEL, and ELEVATORS. For those problems, the size
of the largest base-case is significantly smaller than the size of the concrete problem, as shown
in Figure 3.14b. One IPC domain that is particularly amenable to decomposition is the ROVERS

domain, where many of its instances are decomposed to have largest base-cases modelling a single
Boolean state-variable. Also, for domains susceptible to decomposition, the bounds computed by
HYB grow sub-exponentially with the number of state variables, as shown in Figure 3.14a. We
also note that out of those domains, LOGISTICS, NOMYSTERY, SATELLITES, ZENO TRAVEL and
ELEVATORS, have linear (or almost linear) growth of the bounds with the size of the problem.

We also ran HYB on a PDDL McDermott et al. (1998) encoding of the hotel key protocol,
with the parameters G, k, and R ranging between 1 and 10 (i.e. 1000 instances of the protocol).
As shown in Figure 3.14b (and in the examples earlier), this protocol is particularly amenable to
decomposition by HYB. All instances had a largest base-case modelling a single Boolean state-
variable. Additionally, the bounds computed by HYB for this set of benchmarks are constant in
the number of guests G, grow linearly in the number of rooms R, and quadratically in the number
of keys per room K.

3.9.2 Comparison of HYB and Nsum

We compared the performance of the hybrid compositional bounding algorithm HYB with Nsum,
which we showed earlier to dominate other state-of-the-art compositional bounding algorithms.
Our experimental cluster and settings are as above. Our analysis and experimentation shows that
HYB significantly outperforms Nsum, both in terms of decomposition quality and the tightness
of computed bounds. This is particularly the case for the domains: NEWOPEN, NOMYSTERY,
ROVERS, HYP, TPP, VISITALL, and BOTTLENECK. The success of HYB in our experimentation
reveals something of an abundance of problems with acyclicity in their state space. Figure 3.15b
indicates that HYB is more successful in decomposing problems compared to Nsum, where the
largest base-cases for HYB are smaller than those for Nsum in 71% of the IPC problems. This
observation is reinforced, considering that the 1000th largest bound computed by HYB is 50, 534,
while the 1000th largest bound computed by Nsum is more than 106. In the HOTELKEY domain,
the difference is even more pronounced. The bound computed by HYB is at most 990 for all the
1000 instances, while for Nsum only 285 instances have bounds less than 106.

Figure 3.15a shows the computational cost of this improved bounding performance. HYB

typically required more computation time than Nsum. However, HYB terminated in 60 seconds,

§3.10 Conclusion and Open Questions 39

or less, for 93% of the benchmarks. Thus, we have not observed a significant time penalty. We
note that the improved decompositionality over Nsum exhibited here has further application yet
to be explored. Should we take UPBND to be a more expensive operator, such as the NP-hard
recurrence or sublist diameters, the stronger decomposition indicates that UPBND is invoked for
relatively small instances when using HYB compared to Nsum. Thus, computing UPBND can
be exponentially easier for decompositions computed by HYB compared to decompositions from
Nsum.

3.9.3 Planning with HYB

To evaluate the practical utility of the bounds calculated using HYB, we take them as the queried
horizon using the MP version of the SAT-based planner Madagascar Rintanen (2012). In our ex-
periments we limited the time and memory for planners to 1 hour (inclusive of bound computation)
and 4GB. The resulting planner proves the safety of 635 instances of the hotel key protocol, where
the instance with 9 rooms, 7 guests, and 45 keys, takes the longest to prove safe – it took just under
30 minutes. This is a substantial improvement over the size of instances automatically proven safe
in earlier work. We also ran AIDOS 1 Seipp et al. (2014) (unsolvability IPC winner) on the hotel
key instances and it proved the safety of only 285 of them, where the instance with 2 rooms, 5

guests, and 10 keys, took the longest to prove safe – in 17 minutes. For the IPC benchmarks, our
planner proved that 53 instances are unsolvable, 27 of which could not be proven unsolvable by
AIDOS 1. The 27 instances are from BOTTLENECK (7 problems), 3UNSAT (4 problems), ELE-
VATORS (5 problems), and NEWOPEN (11 problems). We also note that compared to the system
from Rintanen and Gretton (2013), we are additionally able to close the heretofore open 7th and
8th Qualitative Preference problem from IPC2006. We also found our bounds useful in solving
satisfiable benchmarks. It allowed MP to solve 162 instances that it could not with its default
query strategy. Those instances are from ELEVATORS (150 problems), DIAGNOSIS (8 problems),
ROVERS (1 problem) and SLIDING-TILES (3 problems).

3.10 Conclusion and Open Questions

The practical incompleteness of SAT-based planning and bounded model checking has for some
years been noted as a significant problem Clarke et al. (2004). It is perceived as a deficiency of
SAT methods in making comparisons with state based methods. This is due to the absence of ef-
fective upper-bounding methods for topological properties of digraphs that model state spaces. We
have addressed that deficiency by advancing the compositional approach to upper-bounding, virtu-
ally, the only practical approach. Although the compositional approach was intensely investigated
to solve other graph theoretic questions concerning state spaces, most notably reachability, there
is not as much work on compositionally upper-bounding topological properties of state spaces,
except for Baumgartner et al. (2002); Rintanen and Gretton (2013). We considered a composi-
tional approach based on a well studied abstraction, which is projection, and a well studied system
structure, which is state variable dependency. We showed that projection and variable dependen-
cies cannot be used to compositionally upper-bound two interesting topological properties: the
diameter and the recurrence diameter.

To mitigate this, we defined new topological properties, the sublist diameter and the traversal
diameter, which can be upper-bounded compositionally, and accordingly can be used to upper-
bound the diameter and/or the recurrence diameter. In addition to being compositionally bounded,
those new properties can be exponentially smaller than existing properties (like the size of the
state space or the recurrence diameter) that were used in previous works to compositionally upper-

40 Compositional Upper-Bounding of Topological Properties

bound the diameter and the recurrence diameter. We also showed that those new parameters have
interesting properties. For example, the sublist diameter exploits the factored representation: its
value depends on the factored representation rather than the digraph modelling the state space.
The traversal diameter on the other hand can be computed in linear time, and thus can be generally
used as a completeness threshold instead of the NP-hard recurrence diameter.

To be able to deal with realistic problems we introduced a compositional procedure that ex-
ploits acyclicity in the state space and that is based on a new abstraction that we defined, snap-
shotting. An advantage of this new approach is that both, the diameter and the recurrence diameter
can be compositonally bounded using it. Combined with projection based compositional bound-
ing, the hybrid procedure produces very fine grained abstractions and very tight bounds compared
to existing compositional upper-bounding procedures. Those benefits comes with the risk of an
exponential explosion in the number of abstractions considered by the algorithm. The runtime
measurements we made experimentally suggest that this theoretical risk is not realised in practice.

An important contribution was our methodology of defining new topological properties and
new abstractions to indirectly compositionally upper-bound interesting topological properties, that
themselves cannot be upper-bounded compositionally. We believe that the following questions are
interesting for future research.

• Are there certain classes of temporal logic formulae, for which the sublist diameter or the
traversal diameter is a tight completeness threshold?

• Does every digraph have a factored representation with a sublist diameter equal to the diam-
eter? If this is possible, obtaining this factoring must be at least an NP-hard problem, since
computing the sublist diameter is NP-hard, while computing the diameter is in P. If this is
not the case, how close can the sublist diameter be, to the diameter, after factoring?

• Nsum computes bounds on the diameter that cannot be improved, if the sublist diameters
or the recurrence diameters of projections, and the dependencies are given. Would Nsum

still be tight given more knowledge, like the projections themselves instead of their sublist
diameters or recurrence diameters.

• As we stated earlier, the polynomial returned by Nsum depends only on the structure of
the given DAG. We conjecture that for any polynomial, ρ, there is a DAG for which Nsum

returns a polynomial isomorphic with ρ.

§3.10 Conclusion and Open Questions 41

xu2
0

xu2
4xu2

5

xu2
1

xu2
2

xu2
3

(a)

xu3
0

xu3
1

xu3
2

xu3
3

xu3
4

(b)

xu1
0

xu1
1

xu1
2

xu1
3

xu1
4

(c)

{v1, v2, v3}

{v4, v5, v6} {v7, v8, v9}

(d)

(e)

Figure 3.6: Referring to Example 5. (a), (b), and (c) are the largest connected components in the state
spaces of the flowers 4u1

4,2, 4u2

4,3 and 4u3

4,2, respectively, (d) a lifted dependency graph of the factored system
δ, and (e) is the largest connected component in the state space of δ. In this graph our notation is flattened,
where for instance the state xu1

i] x
u2
j] x

u3

k is denoted by ijk. States x1 and x2 are indicated by the blue

and green vertices, respectively. The red vertices indicate the states traversed by
→
π if executed on x1. Note

that (a), (b), and (c) are contractions of (e).

42 Compositional Upper-Bounding of Topological Properties

xu2
0xu2

1 xu2
2

xu2
3

(a)

xu3
0 xu3

1xu3
2

(b)

xu1
0 xu1

1xu1
2

(c)

{v1, v2}

{v3, v4} {v5, v6}

(d)

(e)

Figure 3.7: Referring to Example 7, (a), (b), and (c) are the largest connected components in the state
spaces of the flowers 4u2

3,2, 4u3

2,2 and 4u1

2,2, respectively, (d) a lifted dependency graph of the factored system δ

from Example 7, and (e) is the largest connected component in the state space of δ.

§3.10 Conclusion and Open Questions 43

vs1

vs2vs3

vs4

Figure 3.8: A lifted dependency graph for a factored digraph that has four sets of variables closed under
mutual dependency.

Figure 3.9: The bounds computed by Nsum〈b〉 versus Msum〈b〉 with 2|D(δ)| − 1 as a base function.

xi1 xi2 xim−1 xim−1

xim

xim+1

xim+2

xim+l−1

Figure 3.10: An inverted flower with 3 ≤ m.

44 Compositional Upper-Bounding of Topological Properties

xu2
1 xu2

2

xu2
3

xu2
4

(a)

xu3
1

xu3
2

xu3
3

(b)

xu1
1

xu1
2

xu1
3

xu1
4xu1

5

xu1
6

xu1
7

xu1
8

(c)

{v1, v2, v3}

{v4, v5} {v6, v7}

(d)

(e)

Figure 3.11: Referring to Example 10, (a), (b), and (c) are the largest connected components in the state
spaces of the inverted flowers

4u2

2,3,

4u3

2,2 and

4u1

7,2, respectively (i.e. G(

4u2

2,3),G(

4u3

2,2), and G(

4u1

7,2)), (d) a lifted
dependency graph of the factored system δ, and (e) is the largest connected component in the state space of
δ. States x1 and x2 are indicated by the blue and green vertices, respectively. The red vertices indicate the
states traversed by

→
π if executed on x1. Note that (a), (b), and (c) are contractions of (e).

§3.10 Conclusion and Open Questions 45

[] H
vs

→
π =

→
π�vs

→
π c H

vs
[] = []

πc ::
→
π c H

vs
π ::

→
π =

 π :: (
→
π c H

vs

→
π) if π�vs = πc

πc ::
→
π c H

vs

→
π o/wise

(a) .

v2 v3

v1 v4 v5

(b)

Figure 3.12: (a)The definition of the stitching function (H), and (b) is the dependency graph of the system
in Example 11.

; check in to a room (at reception), receiving a new key
({lk1,1}, {gk1,2,lk1,2,lk1,1,s1}), ({lk1,2}, {gk1,3,lk1,3,lk1,2,s1}),
({lk1,1}, {gk2,2,lk1,2,lk1,1,s1}), ({lk1,2}, {gk2,3,lk1,3,lk1,2,s1}),
({lk2,4}, {gk1,5,lk1,5,lk1,4,s2}), ({lk2,5}, {gk1,6,lk1,6,lk1,5,s2}),
({lk2,4}, {gk2,5,lk1,5,lk1,4,s2}), ({lk2,5}, {gk2,6,lk1,6,lk1,5,s2})
; enter a room with new key
({gk1,2}, {ck1,2,ck1,1,s1}), ({gk2,2}, {ck1,2,ck1,1,s1}),
({gk1,3}, {ck1,3,ck1,2,s1}), ({gk2,3}, {ck1,3,ck1,2,s1}),
({gk1,5}, {ck2,5,ck2,4,s2}), ({gk2,5}, {ck2,5,ck2,4,s2}),
({gk1,6}, {ck2,6,ck2,5,s2}), ({gk2,6}, {ck2,6,ck2,5,s2})

(a)
ck1,1ck1,2ck1,3

s1

gk1,2gk2,2gk1,3gk2,3

lk1,1lk1,2lk1,3

ck2,4ck2,5ck2,6

s2

gk1,5gk2,5gk1,6gk2,6

lk2,4lk2,5lk2,6(b)
({lk1,1}, {gk1,2,lk1,2,lk1,1,s1}), ({lk1,2}, {gk1,3,lk1,3,lk1,2,s1}),
({lk1,1}, {gk2,2,lk1,2,lk1,1,s1}), ({lk1,2}, {gk2,3,lk1,3,lk1,2,s1}),
({gk1,2}, {ck1,2,ck1,1,s1}), ({gk2,2}, {ck1,2,ck1,1,s1}),
({gk1,3}, {ck1,3,ck1,2,s1}), ({gk2,3}, {ck1,3,ck1,2,s1})

(c)
({lk1,1}, {gk1,2,lk1,2,lk1,1,s1}), ({lk1,2}, {gk1,3,lk1,3,lk1,2,s1}),
({lk1,1}, {gk2,2,lk1,2,lk1,1,s1}), ({lk1,2}, {gk2,3,lk1,3,lk1,2,s1}),
({gk1,2}, {s1}), ({gk2,2}, {s1})

(d)
s1

gk1,2gk2,2gk1,3gk2,3

lk1,1lk1,2lk1,3

(e)

s1

gk1,2gk2,2

(f)

Figure 3.13: (a) shows the actions of a transition system δ representing the hotel key protocol with 2
rooms, 2 guests and 3 keys per room; room 1 is associated with keys 1–3; room 2 with keys 4–6. (b) is the
dependency graph for that system. (c) is the projection of the system on an abstraction that models only the
changes related to room 1. (d) is the snapshot of δ�ROOM1 on CK1,2, an abstraction that only analyses the
changes related to room 1 when its door recognises key 2 as the current key. (e) and (f) are the dependency
graphs of snapshots that we use for illustrative purposes in the examples.

46 Compositional Upper-Bounding of Topological Properties

(a)

(b)

Figure 3.14: Measurements related to HYB on benchmarks. (a) Scatter plot of the bound (horizontal axis)
computed by HYB, and the size (i.e. |D(δ)|) of the concrete problem (vertical). (b) Scatter plot of the size
of the largest base-case (horizontal), and the size of the concrete problem (vertical).

§3.10 Conclusion and Open Questions 47

(a)

(b)

Figure 3.15: Comparison of the bounding performance of Nsum and HYB on benchmarks. Legend is
provided in Figure 3.14a. (a) Scatter plot of the bounds computed by HYB (horizontal axis) and the state-of-
the-art bounding algorithm Nsum (vertical). (b) Scatter plot of the size (i.e. |D(δ)|) of the largest base-case
using HYB (horizontal axis) and Nsum (vertical).

48 Compositional Upper-Bounding of Topological Properties

Figure 3.16: Scatter plot of computation time (in seconds) of HYB (horizontal axis) and Nsum (vertical) for
benchmarks. Legend is provided in Figure 3.14a.

Chapter 4

Compositional Computation of
Reachability in the Presence of
Repetitive Symmetry

Testing whether one vertex (or a set of vertices) in a digraph can be reached from another vertex
is one of the oldest and most well studied problems in computer science and graph theory. In
AI planning and model checking, this problem is of immense importance, where the digraph is
taken to model the state space of the problem, and the question is whether a goal state can be
reached from a given initial state. In AI planning, the problem of reachability between states is
the main problem whose solution is sought. An initial state and a set of goal states are given,
and the quest is to find a valid action sequence (a plan) that if executed in the initial state will
result in one of the goal states. Similarly, in model checking, the problem of reachability between
states corresponds to the problem of checking safety properties of systems. An initial state of the
system is given, along with a formula characterising desired safety properties, and a sequence of
transitions (a bug trace) from the initial state to a state violating the given formula is searched for.

Although many polynomial time algorithms (e.g. Bellman-Ford algorithm) were introduced
to solve the reachability problem for digraphs, they all assume that the digraph is explicit. Accord-
ingly, for propositionally factored transition systems, if one uses any of those algorithms naively,
he needs to construct the digraph modelling the state space to solve the reachability problem.
Thus, the complexity of reachability in factored transition systems is PSPACE-complete Sistla
and Clarke (1985); Bylander (1994), since the digraph modelling the state space can be exponen-
tially larger than the factored representation. The compositional approach alleviates can alleviate
the practical complexity of computing reachability, making the problem feasible to solve in many
cases, where it otherwise may not be. In this approach, digraphs modelling state spaces of ab-
stractions (which are minors of the original state space) are searched for paths, which are then
used to synthesise a path in the digraph modelling the state space of the concrete system, a path
that connects the required states. In this chapter we consider applying that approach to compute
reachability, where we consider minors of the state space corresponding to the state space of an
abstraction of the factored system that we refer to as a “descriptive quotient”. In particular, we
exploit a certain type of symmetry, which we call repetitive symmetries, in the factored system to
obtain those abstractions.

State Variable Symmetry Informally, in a factored system δ, two state variables v1 and v2 are
symmetric if they can be swapped by a permutation of the state variables of δ, and the resulting
system is the same (up to isomorphism) as δ. This state variable symmetry relation induces a
partition of the set of state variables and a partition of the actions. We find those partitions most

49

50 Compositional Computation of Reachability in the Presence of Repetitive Symmetry

useful for use with quotienting within our work.

4.1 Related Work

Algorithms for finding a path or the shortest path between two vertices in a digraph were devised
since the middle of last century. The earliest algorithm that we are aware of, the Bellman-Ford
algorithm Bellman (1958), finds the shortest path between two vertices in a time linear in the
product of the edges and vertices of a digraph. Many algorithms were introduced after that like
the ones in Dijkstra (1959); Fredman and Tarjan (1987); Thorup (2003). All of those algorithms
assume that the digraph is represented explicitly, and also they are all at least linear in both, the
number of vertices and the number of edges. Accordingly a naive application of these algorithms
to finding paths in state spaces of factored systems would be infeasible.

Compositional Planning and Model Checking

The compositional approach was employed to find solutions to AI planning and model check-
ing problems in work like Knoblock (1994); Williams and Nayak (1997); Berezin et al. (1998);
Case et al. (2009); Kroening (2006); Amir and Engelhardt (2003); Brafman and Domshlak (2006);
Kelareva et al. (2007); Guere and Alami (2001); Helmert et al. (2014); Sievers et al. (2015). In
those works, different types of abstractions and structures were used, and only the state space of a
projected system is searched for a path. For example, abstractions based on projection were used
in Knoblock (1994); Williams and Nayak (1997), which exploited acyclicity in variable depen-
dencies. Another approach for compositional path search, known as factored planning, is used
by Amir and Engelhardt (2003); Brafman and Domshlak (2006); Kelareva et al. (2007), in which
the factored system δ is abstracted into multiple abstractions, referred to as “factors”. These fac-
tors are obtained by an abstraction that, given a partition of the set of state variables vs1..n, it
produces a set of sets of actions, one per vs i ∈ vs1..n, such that the set of actions refers only to
variables in vs i. This partition of state variables is based on a tree decomposition of an undirected
version of the variable dependency graph.

Exploiting Symmetries

Symmetries that occur in factored transition systems have for some time been exploited for effi-
cient search for paths between states, both by AI planning and model checking communities. The
quintessential planning scenario which exhibits symmetries is GRIPPER. This comprises a robot
whose left and right grippers can be used interchangeably in the task of moving a set ofN indistin-
guishable packages from a source location to a goal location. Intuitively the left and right grippers
are symmetric because if we changed their names, by interchanging the terms left and right in the
problem description, we are left with an identical problem. Packages are also interchangeable and
symmetric.

One method to exploit symmetry is to perform search in a minor of the digraph modelling the
state space, referred to as a quotient system, which corresponds to a (sometimes exponentially)
smaller bisimulation of the system at hand. Planning in a quotient system, a state x is represented
by a canonical element from its orbit, the set of states which are symmetric to x. Giving integer
labels to packages in GRIPPER, when the search encounters a state where the robot is holding
1 package using 1 gripper, this is represented using the canonical state where, for example, the
left gripper is holding package with identity “1”. Orbit search explores the quotient system by

§4.2 Results 51

simulating actions from known canonical states, and then computing the canonical representa-
tions of resultant states. That canonicalisation step requires the solution to the constructive orbit
problem Clarke et al. (1998) which is NP-hard Eugene (1993). A key weakness, is that for each
state encountered by the search an intractable canonicalisation operation is performed. This is
mitigated in practice by using approximate canonicalisation. By forgoing exact canonicalisation,
one encounters a much larger search problem than necessary. For a GRIPPER instance with 42

packages, the breadth-first orbit search with approximate canonicalisation by Pochter et al. (2011)
reportedly performs 60.5K state expansion operations, far more than necessary. This method of
exploiting symmetry was firstly used in solving model checking problems, which is reviewed by
Wahl and Donaldson (2010). Also, this method was recently adapted for planning and studied
by Pochter et al. (2011), Domshlak et al. (2012, 2013) and Shleyfman et al. (2015). Related work
about state-based planning in equivalence classes of symmetric states includes Guere and Alami
(2001); Fox and Long (1999, 2002).

Following the seminal work by Crawford et al. (1996) and Brown et al. (1996), when search-
ing for a path (in the context of AI planning) via constraint satisfaction, known symmetries are
exploited by:

(i) including symmetry breaking constraints, either directly as part of the problem expres-
sion Joslin and Roy (1997); Rintanen (2003), or

(ii) otherwise dynamically as suggested by Miguel (2001) as part of a nogood mechanism.

In GRIPPER, we can statically require that if no package is yet retrieved, then any retrieval targets
package 1 with the left gripper. Dynamically, having proved that no 3-step plan exists retrieving
package 1 with the left gripper, then no plan of that length exists retrieving package i 6= 1 using
either gripper. Searching using the proposed dynamic approach is quite weak, as symmetries
are only broken as nogood information becomes available. A weakness of both approaches is
that problems expressed as CSPs include variables describing the state of the transition system at
different plan steps. Existing approaches do not break symmetries across steps, and can therefore
waste effort exploring partial assignments that express executions which visit symmetric states at
different steps.

Another method to exploit symmetries is via abstracting the factored system at hand. Some
authors perform search in the state space of a counter abstraction, as surveyed by Wahl and Don-
aldson (2010). That approach treats a transition system isomorphic to the quotient system, but
it avoids solving the NP-hard constructive orbit problem. Symmetries were also explored in fac-
tored planning in the context of merge-and-shrink heuristics Helmert et al. (2014). Sievers et al.
(2015) developed a symmetry guided merging operation which yields relatively compact heuristic
models, improving the scalability of that approach. Guere and Alami (2001) propose to plan via
a shape-graph, a compact description of the problem state space in which states are represented
by equivalence classes of symmetric states. As well as planning by searching in that graph, using
the diameter of the shape-graph Guere and Alami are able to calculate tight upper bounds for the
highly symmetric GRIPPER and BLOCKS-WORLD domains.

4.2 Results

We consider the AI planning problem defined on factored transition systems, i.e. given an initial
state I ∈ U(δ) and a set of goal states G, is there an action sequence that reaches one of the goal
states if it is executed at the initial state.

52 Compositional Computation of Reachability in the Presence of Repetitive Symmetry

Our contribution is a new abstraction of factored transition systems, the result of which we
call a descriptive quotient. We provide conditions under which searching for a path between the
initial state and a goal state (i.e. a plan) in the digraph modelling the state space of the descritptive
quotient can be used to synthesise a path between the initial state and some goal state in the
original system. The first condition is that the partition used to obtain the descriptive quotient
is induced by the symmetry relation between state variables (a.k.a. orbits of a subgroup of the
automorphism group). The second condition is that the descriptive quotient is isomorphic to a
“sub-system” of the original factored system. Informally, those two conditions mean that planning
via descriptive quotients is a way to exploit “repetitive symmetries” in a factored system, where
by repetitive symmetries we mean that the factored system is constituted by a union of isomorphic
sub-systems.

Based on that we provide a novel procedure for domain-independent planning with symme-
tries. Following, e.g., Pochter et al., in a first step we infer knowledge about the symmetries be-
tween state variable. Then departing from existing approaches, our second step uses that knowl-
edge to obtain a quotient of the concrete factored system. Called the descriptive quotient, this
describes any element in the set of isomorphic subsystems which abstractly model the concrete
system. Third, we invoke a planner once to solve the small reachability problem posed by that
descriptive quotient. In the fourth and final step, a concrete plan is synthesized by concatenating
instantiations of that plan for each isomorphic subproblem.

The non-existence of a plan for the descriptive quotient does not exclude the possibility of a
plan in the concrete system. Although sound, in that respect our approach is incomplete. Having
an optimal plan for the quotient does not guarantee optimality in the concatenated plan. Aside
from computing a plan for the descriptive quotient, the computationally challenging steps occur
in preprocessing:

(i) Identification of state variable symmetries from the original description, a problem as hard
as graph isomorphism, which is not known to be tractable, and

(ii) Computing an appropriate set of subsystems isomorphic to the quotient.

We introduce the general version of the latter problem: for an undirected graph G and a partition
of its vertices P , is the quotient G/P isomorphic to a subgraph of G, such that the morphism maps
every set of vertices from P to one of its members? We show that this problem is NP-complete.
We also show that if P is a set of orbits of a symmetry group for G, then there is set of morphisms
from G/P to G that covers all the vertices of G, and whose size is logarithmic in the vertices of G.

Unlike existing approaches, our search for a plan does not need to reason about symmetries
between concrete states and the effects of actions on those. Plan search can be performed by an
off-the-shelf SAT/CSP system, in which case symmetry breaking constraints are not required. Al-
ternatively, using a state-based planner we avoid repeated (approximate) solution to the intractable
canonicalisation problem, a clear bottleneck of recent planning algorithms. In this respect, our
approach is similar to searching in a counter abstraction, as surveyed by Wahl and Donaldson
(2010). Also, viewing our approach as one that decomposes a problem into subproblems, it is re-
lated to factored planning Amir and Engelhardt (2003); Brafman and Domshlak (2006); Kelareva
et al. (2007).

The most important advantage of searching in the digraph modelling the state space of the
descriptive quotient is that it is a minor that can be very compact relative to the digraph modelling
the state space of the original factored system. For instance, a counter abstraction has a state space
which can be exponentially larger than that of a descriptive quotient—i.e., the descriptive quotient
will model 1 object, whereas the quotient transition system models N symmetric objects. Also,

§4.3 Planning Problems and Additional Notation 53

v1v2v3v4v5 v1v2v3v4v5

v1v2v3v4v5

v1v2v3v4v5

v1v2v3v4v5

v1v2v3v4v5

v1v2v3v4v5 v1v2v3v4v5

Figure 4.1: The largest connected component of the state space of the transition system underlying the
problem from Example 21. It shows the presence of symmetries between different states.

existing state-based methods plan in that relatively large quotient system, and as just mentioned,
face an additional intractable problem for every encountered state. By employing approximate
canonicalisation, such methods face a state space much larger than that posed by the quotient
system, which can be exponentially larger than that posed by a descriptive quotient. To give an
idea of how compact can the size of the state space of the descriptive quotient, the descriptive
quotient of the aforementioned 42-package GRIPPER instance is solved by breadth-first search
expanding 6 states, and a concrete plan is obtained in under a second. On the other hand, the
approach by Pochter et al. (2011) expands 60.5K states and takes about 28 seconds.

4.3 Planning Problems and Additional Notation

We formally define planning problems.

Definition 24 (Planning Problem). A planning problem Π is a 3-tuple 〈I, δ,G〉, with I the initial
state of the problem,G a description of goal states (another finite map from variables to Booleans),
and δ a set of actions. We define the domain of the problem (D(Π)) to be domain of the set of
actions (D(δ)). The set of valid states with respect to a planning problem, which we write as
U(Π) is U(δ). Problem Π is valid if D(G) ⊆ D(I), and I ∈ U(Π). We only consider valid
problems. Hereafter we refer to the initial state, actions or goal of problem Π as Π.I , Π.δ or Π.G
respectively. We may also omit the Π if it is clear from the context, e.g. I for Π.I and δi for Πi.δ.
An action sequence

→
π is a plan/solution for a planning problem Π iff

→
π ∈ δ∗ and G ⊆ ex(I,

→
π).

Definition 25 (Subproblem). Problem Π1 is a subproblem of Π2, written Π1 ⊆ Π2, if I1 ⊆ I2,
and if δ1 ⊆ δ2.

Definition 25 purposefully only treats the description of system dynamics, and does not con-
sider problem goals. We later consider subproblems with a variety of goals which do not all
correspond to concrete problem goals. We form a concrete plan by concatenating plans for sub-
problems with such varieties of goals. For example, we will consider subproblems from GRIPPER

with only one package and one gripper, where the goal is to: (i) relocate that package according to
the concrete goal, (iii) additionally free the gripper, and (ii) additionally have the robot relocate to
its starting position. In this case a concrete plan is formed by concatenating plans for subproblems
given for each distinct package.

Lastly, we require a few notations. For a set of actions δ, we define the set of preconditions
pre(δ) as

⋃
(p,e)∈δ p. Let m be a finite map, e.g., a state x, etc.. Then, let fLmM be the image of m

under function f : the map
⋃

(k 7→v)∈m{f(k) 7→ v}. This is well-defined if f(k1) = f(k2) implies
that m(k1) = m(k2). We lift this notion of image to other composite types. For example, we
write fLΠM for the image of Π under f , where all finite maps in Π are transformed by f .

54 Compositional Computation of Reachability in the Presence of Repetitive Symmetry

O3 O7 O1 O5 O0 O4

Figure 4.2: The quotient state space of the system from Example 21 in which the traditional orbit search
algorithm, ideally, would search for a path.

p1p2p3 p1p2p3 p1p2p3 p1p2p3

Figure 4.3: The largest connected component in the state space of the transition system underlying the
descriptive quotient of the problem in Example 21.

4.4 Computing Problem Symmetries

To exploit problem symmetries we must first discover them. We follow the discovery approach
from Pochter et al. (2011), restricting ourselves to Boolean-valued variables in D(Π). We assume
familiarity with groups, subgroups, group actions, and graph automorphism groups. Symmetries
in a problem description are defined by an automorphism group.

Definition 26 (Problem Automorphism Group). The automorphism group of Π is: Aut(Π) =

{σ | σLΠM = Π}. Members of Aut(Π) are permutations on D(Π) and they induces a partition of
D(Π) to which we refer as orbits.

Example 21. Consider the planning problem Π1 with

Π1.I = {v3, v1, v2, v4, v5}
Π1.δ = {({v3, v1}, {v4, v3}), ({v3, v2}, {v5, v3}), (∅, {v3})}
Π1.G = {v4, v5}

The largest connected component of G(δ1) is shown in Figure 4.1. Aut(Π1) is the closure of this
set of permutations under composition: {{v1 7→ v2, v2 7→ v1}, {v4 7→ v5, v5 7→ v4}}. Let vs1..n be
{p1 = {v1, v2}, p2 = {v3}, p3 = {v4, v5}}. This partition of D(Π1) is the set of orbits induced by
Aut(Π1). This variable symmetry induces symmetries between the states and accordingly vertices
of G(δ1) as shown in Figure 4.1, where state 1 is symmetric with 2, and 5 is symmetric with 6.
The quotient system in which, ideally, traditional approaches would search for a path to exploit
symmetry is shown in Figure 4.2, and it is clearly smaller in size than G(δ1).

A graphical representation of Π is constructed so vertex symmetries in it correspond to variable
symmetries in Π. We follow the graphical representation introduced in Pochter et al. (2011).

Definition 27 (Undirected Graph). An undirected graph G is a tuple 〈V,E〉, where V is the set of
vertices of G and E is the set edges of G which is a set of unordered pairs from V . We write V (G)

for the set of vertices, and E(G) for edges of a graph G.

Definition 28 (Problem Description Graph (PDG)). The (undirected) graph G(Π) for a planning
problem Π, is defined as follows:

(i) G(Π) has two vertices, u1
> and u1

⊥, for every variable v ∈ D(Π); two vertices, ap and ae,
for every action (p, e) ∈ δ; and vertex u1I for I and u1G for G.

(ii) G(Π) has an edge between u1
> and u1

⊥ for all v ∈ D(Π); between ap and ae for all
(a, e) ∈ δ; between ap and v∗ if (v 7→ ∗) ∈ p, and between ae and v∗ if (v 7→ ∗) ∈ e;
between v∗ and vI if (v 7→ ∗) occurs in I; and between v∗ and vG if (v 7→ ∗) occurs in G.

§4.5 Computing the Set of Instantiations 55

The automorphism group of the PDG, Aut(G(Π)), is identified by solving an undirected graph
isomorphism problem. The action of a subgroup of Aut(G(Π)) on V (G(Π)) induces a partition,
called the orbits, of V (G(Π)). We can now define our quotient structures based on partitions vs1..n

of D(Π).

Definition 29 (Quotient Undirected Graph). For graph G and a partition P of its vertices, the
quotient G/P is the digraph:

(i) V (G/P) = P , and

(ii) E(G/P) = {{U,W} | U,W ∈ P ∧ ∃u2 ∈ U, u3 ∈W.{u2, u3} ∈ E(G)}.

Definition 30 (Quotient Problem). Given partition vs1..n of D(Π), let Q map members of D(Π)

to their equivalence class in vs1..n. The descriptive quotient is Π/vs1..n = QLΠM, the image of
Π under Q. This is well-defined if vs1..n is a set of orbits. We assume that quotient problems are
well-defined.

Example 22. Consider the planning problem Π1 from Example 21, and the partition vs1..n. The
descriptive quotient associated with vs1..n is as follows.

(Π1/vs1..n).I = {p1, p2, p3}
(Π1/vs1..n).δ = {({p1, p2}, {p2, p3}), (∅, {p2})}

(Π1/vs1..n).G = {p3}

The largest component of the minor G((Π1/vs1..n).δ) is shown in Figure 4.3. It is clearly smaller
than the orginal state space shown in Figure 4.1 as well as the quotient system shown in Figure 4.2.

To ensure correspondence between PDG symmetries and problem symmetries, we must ensure
incompatible descriptive elements do not coalesce in the same orbit. For example, we cannot have
action precondition vertices and state-variables in the same orbit.

Definition 31 (Well-formed Partitions). A partition of V (G(Π)) is well-formed iff:

(i) Positive (u1
>) and negative (u1

⊥) variable assignment vertices only coalesce with ones of
the same parity;

(ii) Precondition (ap) and effect (ae) vertices only coalesce with preconditions and effects re-
spectively, and

(iii) Both u1I and u1G are always in a singleton.

A well-formed partition P̂ defines a corresponding partition vs1..n of D(Π), so that G(Π)/P̂ =

G(Π/vs1..n)

To ensure well-formedness, vertex symmetry is calculated using the coloured graph-
isomorphism procedure (CGIP). Vertices of distinct colour cannot coalesce in the same orbit.
Vertices of G(Π) are coloured to ensure the orbits correspond to a well-formed partition.

4.5 Computing the Set of Instantiations

Recapping, symmetries in Π are the basis of a partition vs1..n of its domain D(Π) into orbits.
That exposes the descriptive quotient, Π/vs1..n, an abstract problem whose variables correspond

56 Compositional Computation of Reachability in the Presence of Repetitive Symmetry

to orbits of concrete symbols. Our task now is to compute a set of instantiations of the quotient
which cover all the goal variables D(G). Called a covering set of isomorphic subproblems, by
instantiating a quotient plan for each subproblem and concatenating the results we intend to arrive
at a concrete plan. We describe a pragmatic approach to obtaining that covering set. We establish
that a covering set is not guaranteed to exist, and give an approach to refining partitions to mitigate
that fact. We derive a theoretical bound on the necessary size of a covering set, and prove that a
general graph formulation of the problem of computing a covering instantiation is NP-complete.

Definition 32 (Transversals, Instantiations). A transversal t is an injective choice function over
a set of sets S such that t(c) ∈ c for every equivalence class c ∈ S. A transversal covers v if
v ∈ R(t). If vs1..n is a partition of D(Π), we refer to a transversal t of vs1..n as an instantiation
of Π/vs1..n. An instantiation t is consistent with a concrete problem Π if tLΠ/vs1..nM ⊆ Π.
When we use the term “problem” discussing an instantiation t, we intend tLΠ/vs1..nM. Note that
D(tLΠ/vs1..nM) = R(t).

Example 23. Consider the set s = {a, b, c, d, e, f}, and the equivalence classes c1 = {a, b},
c2 = {c, d} and c3 = {e, f} of its members. For the partition P = {c1, c2, c3} of s, t1 = {a, c, e}
and t2 = {b, c, f} are two transversals.

For each goal variable in the problem, our approach shall need to find a consistent instantiation of
the quotient which covers that. We thus face the following problem.

Problem 1. Given Π and a partition vs1..n ofD(Π), is there an instantiation of Π/vs1..n consistent
with Π that covers a variable v ∈ D(Π)?

Example 24. Consider the planning problem Π1 from Example 22. Let instantiation t be
{p1 7→ v3, p2 7→ v1, p3 7→ v4}. Then, t covers v4, and tLΠ1/vs1..nM has I = {v3, v1, v4},
A = {({v3, v1}, {v4, v3}), (∅, {v3})} and G = {v4}. Thus, tLΠ1/vs1..nM ⊆ Π1, making t a
consistent instantiation and so a solution to Problem 1 with inputs Π1, P and v4.

4.5.1 Finding Instantiations: Practice

We now describe how we obtain a set of isomorphic subproblems of Π that covers the goal vari-
ables. We compute a set of instantiations, ∆, of the quotient Π/vs1..n. Our algorithm first ini-
tialises that set of instantiations, ∆ := ∅. Every iteration of the main loop computes a consistent
instantiation that covers at least one variable v ∈ D(Π.G). This is done as follows: we create
a new (partial) instantiation t = pv 7→ v , where pv is the set in vs1..n containing v . Then we
determine whether t can be completed, to instantiate every set in vs1..n, while being consistent
at the same time. This determination is achieved by posing the problem in the theory of uninter-
preted functions, and using a satisfiability modulo theory (SMT) solver. Our encoding in SMT
is constructive, and if a completion of t is possible the solver provides it. If successful, we set
∆ := ∆ ∪ {t} and G := G \ R(t), and loop. In the case the SMT solver reports failure, the
concrete problem cannot be covered by instantiations of the descriptive quotient, and we report
failure. In the worst case of D(Π.G) = D(Π), our main loop executes Σp∈vs1..n |p| − |vs1..n|+ 1

times, and hence we have that many instantiations.
Scenarios need not admit a consistent instantiation.

Example 25. Take Π2 with

Π2.I = {v1, v2, v3}
Π2.δ = {({v1}, {v2, v3}), ({v2}, {v1, v3})}
Π2.G = {v3, v1, v2}

§4.5 Computing the Set of Instantiations 57

Let vs1..n = {p1 = {v1, v2}, p2 = {v3}}. The quotient Π2/vs1..n has

(Π2/vs1..n).I = {p1, p2}
(Π2/vs1..n).δ = {({p1}, {p1, p2})}

(Π2/vs1..n).G = {p1, p2}

There are no consistent instantiations of Π2/vs1..n because v1 and v2 are in the same equivalence
class and also occur together in the same action.

Our example demonstrates a common scenario in the IPC benchmarks, where a partition vs1..n

of D(Π) does not admit a consistent instantiation because variables that occur in the same action
coalesce in the same member of vs1..n. We resolve this situation by refining the partition produced
using CGIP to avoid having such variables coalesce in the same orbit. For a vs ∈ vs1..n, consider
the graph G(vs) with vertices vs and edges {{v1, v2} | ∃π ∈ Π.δ ∧ {v1, v2} ⊆ D(π) ∧ v1 6=
v2}. The chromatic number N of G(vs) gives us the number of colours needed to colour the
corresponding vertices v̂s in the PDG. Where two variables occur in the same action, their vertices
in v̂s are coloured differently. For every vs ∈ vs1..n, we use an SMT solver to calculate the
required chromatic numbers N and graph colourings for G(vs), then we colour the corresponding
vertices in the PDG according to the computed N -colouring of G(vs). Lastly, we again pass
the PDG to a CGIP after it is recoloured. In 4 benchmark sets the thus-revised partition admits
a consistent instantiation where the initial partition does not. Although the chromatic number
problem is NP-complete, this step is not a bottleneck in practice because the size of the instances
that need to be solved is bounded above by the largest number of literals stated in any action.

4.5.2 Finding Instantiations: Theory

We first develop a theoretical bound on the number of required instantiations—by treating abstract
covering transversals—that is tight compared to our pragmatic solution above. To characterise the
complexity of our instantiation problem, we then study the general problem of computing covering
transversals.

Theorem 15 (B. McKay, 2014). Let − be a group acting on a set V (e.g., D(Π)). Suppose t
is a transversal of O, a set of orbits induced by the action of − on V . Take S = Σo∈O|o| and
M = maxo∈O|o|. Where • is composition, there will always be a set of transversals T with size
≤M ln(S) such that

(i) Each element t′ ∈ T satisfies t′ = σ • t for some σ ∈ −, and

(ii) For every u1 ∈ V , it has an element t′ that covers u1.

Proof. Take N = M ln(S) and let H be a subset of − obtained by drawing N permutations of
V independently at random with replacement. For any orbit o ∈ O, the probability for a v ∈ o is
not in R(σ • t) for a randomly drawn σ ∈ H is 1 − 1/|o|. Let T = {σ • t | σ ∈ H} and R =⋃

(RLT M). Drawing N times from − to construct H , the probability that v 6∈ R is (1 − 1/|o|)N .
Consider the random quantity Z = |V \R| with expected value E(Z) = Σo∈O|o|(1 − 1/|o|)N .
Since 1 − x < e−x for x > 0, we obtain E(Z) < Σo∈O|o|e(−N/|o|) ≤ Se−N/M = Se− ln(S).
From xe− ln(x) = 1, it follows that E(Z) < 1. Since Z ∈ N, then probability Z = 0 is more than
0, and thus N transversals of O suffice to cover V .

58 Compositional Computation of Reachability in the Presence of Repetitive Symmetry

We conjecture that a much smaller number of transversals is actually required, and in all our
experimentation have found that the following conjecture is not violated:

Conjecture 1. Let − be a group acting on a set V (e.g., D(Π)). Suppose t is a transversal of O,
a set of orbits induced by the action of − on V . Take M = maxo∈O|o|. Where • is composition,
there will always be a set of transversals T with size ≤M such that

(i) Each element t′ ∈ T satisfies t′ = σ • t for some σ ∈ −, and

(ii) For every u1 ∈ V , it has an element t′ that covers u1.

We are left to formulate and study a general problem of instantiation, treating it as one of
finding graph transversals.

Definition 33 (Consistent Graph Transversals). For a graph G and a partition P of V (G), a
transversal t of P is consistent with G when an edge between p1 and p2 in E(G/P) exists iff there
is an edge between t(p1) and t(p2) in E(G).

Example 26. Take G to be the hexagon that we have illustrated twice below in order to depict
partitions P1 = {{a, b}, {c, d}, {e, f}} and P2 = {p′ = {a, b, f}, p′′ = {c, d, e}} on the left and
right respectively.

ab

c

d e

f

ab

c

d e

f

The vertices of G/P1 (a 3-clique) and G/P2 (a 2-clique) are indicated above by red outlines. There
is no consistent transversal of P1 (LHS) because there is no 3-clique subgraph of G with one vertex
from each set in P1. For G/P2 (RHS), t1 = {p′ 7→ f, p′′ 7→ e} is a transversal of P2 consistent
with G, because the subgraph of G induced by {e, f} is a 2-clique with one vertex from each of p′

and p′′.

A transversal of a well-formed P̂ consistent with G(Π) is isomorphic to an instantiation of
Π/vs1..n consistent with Π. Accordingly, Problem 1 is an instance of the following.

Problem 2. Given G, a partition P of V (G) and u1 ∈ V (G), is there a consistent transversal of
P which covers u1?

We now derive the complexity of Problem 2. We first show that the following problem is NP-
complete, and use that result to show that Problem 2 is also NP-complete.

Problem 3. Given graph G and a partition P of V (G), is there a transversal of P consistent with
G?

Lemma 7. Problem 3 is NP-complete.

Proof. Membership in NP is given because a transversal’s consistency can clearly be tested in
polynomial-time. We then show the problem is NP-hard by demonstrating a polynomial-time
reduction from SAT. Consider SAT problems given by formulae ϕ in conjunctive normal form.
Assume every pair of clauses is mutually satisfiable—i.e., for clauses c1, c2 ∈ ϕ, for two literals
`1 ∈ c1 and `2 ∈ c2 we have `1 6= ¬`2 (when this assumption is violated, unsatisfiability can be
decided in polynomial-time). Consider the graph G(ϕ), where V (G(ϕ)) = {u1`c | c ∈ ϕ, ` ∈ c},

§4.6 Concrete Plan from Quotient Plan 59

and E(G(ϕ)) = {{u1`1c1 , u1`2c2} | c1, c2 ∈ ϕ, `1 ∈ c1, `2 ∈ c2, `1 6= ¬`2}. Now let P =

{{u1`c | ` ∈ c} | c ∈ ϕ}. Note that P is a partition of V (G(ϕ)) and every set in P corresponds to
a clause in ϕ. Because all the clauses in ϕ are mutually satisfiable, the quotient G(ϕ)/P is a clique.
Now we prove there is a model for ϕ iff there is a transversal of P consistent with G(ϕ). (⇒) A
modelM has the property ∀c ∈ ϕ. ∃` ∈ c.M |= `. Due to the correspondence between sets in
P and clauses in ϕ, a transversal t of P can be constructed by selecting one satisfied literal from
each clause. Based on a model, t will never select conflicting literals. All members of R(t) are
pairwise connected, so t is consistent with G(ϕ) as required. (⇐) By definition t is consistent
with G(ϕ), so the subgraph of G induced by R(t) is a clique. Let L be literals corresponding
to R(t), and note that its elements are pairwise consistent. A modelM for ϕ is constructed by
assigning u1 to > where u1 occurs positively in L, and to ⊥ otherwise.

Theorem 16. Problem 2 is NP-complete.

Proof. Consistency of a transversal t is clearly polynomial-time testable, as is the coverage con-
dition that u1 ∈ R(t). Thus, we have membership in NP. NP-hardness follows from the following
reduction from Problem 3 (P3). Taking P and G as inputs to P3, construct the graph G′, where:
V (G′) = V (G) ∪ {u1}, u1 an auxiliary vertex; and E(G′) = E(G) ∪ {{u1, u2} | u2 ∈ V (G)}.
There is a solution to P3 with inputs G and P iff P2 is soluble with inputs G′, P ∪ {{u1}} (=
P ′) and u1. (⇒) If t is a transversal of P consistent with G, then t ∪ {{u1} 7→ u1}(= t′) is a
transversal of P ′. As u1 is fully connected, t′ is consistent with G′. t′ is a solution to P2 because
u1 ∈ R(t′). (⇐) If t′ is a solution to P2 with inputs G′, P ′ and u1, then t′ is a transversal of P ′,
and also P . All edges in E(G′) are in E(G), with the exception of those adjacent u1, and since t′

is consistent with G′, then t′ is consistent with G. Thus, t′ solves P3.

In concluding, we note that the NP-hard canonicalisation problem—the optimisation problem
posed at each state encountered by orbit search—is not known to be in NP. Our above results imply
that exploitation of symmetry via instantiation poses a decision problem in NP.

4.6 Concrete Plan from Quotient Plan

Having computed isomorphic subproblems ∆ that cover the goals of Π, a concrete plan is a con-
catenation of plans for members of ∆. However, this is not always straightforward.

Example 27. Take Π1, vs1..n and t from Example 24. Note t′ = {p1 7→ v3, p2 7→ v2, p3 7→ v5} is
also an instantiation of Π1/vs1..n consistent with Π1. Observe that {tLΠ1/vs1..nM,t

′LΠ1/vs1..nM}
covers the concrete goal G = {v4, v5}. A plan for Π1/vs1..n is

→
π
′

= ({p1, p2}, {p3, p1}) and its
two instantiations are tL

→
π
′
M = ({v3, v1}, {v4, v3}) and t′L

→
π
′
M = ({v3, v2}, {v5, v3}). Concate-

nating tL
→
π
′
M and t′L

→
π
′
M in any order does not solve Π1 because both plans require v3 initially,

but do not establish it. To overcome this issue in practice, before we solve Π1/vs1..n we augment
its goal with the assignment p1 7→ >.

We now give conditions under which concatenation is valid, and detail the quotient-goal aug-
mentation step we use to ensure validity in practice. We will use the notion of projection, writing
Y �X to mean Y �D(X), for the common case where we wish to project with respect to all the
variables in the domain of an object.

Definition 34 (Needed Assignments, Preceding Problem). Needed assignments, N (Π), are as-
signments in the preconditions of actions and goal conditions that also occur in I , i.e., N (Π) =

60 Compositional Computation of Reachability in the Presence of Repetitive Symmetry

(pre(δ) ∩ I) ∪ (G ∩ I). Problem Π1 is said to precede Π2, written Π1

�

Π2, iff

G1�
N (Π2) = (I2�

Π1)�N (Π2) ∧ G1�
Π2 = G2�

Π1

In words,

(i) The needed assignments of Π2 which a plan for Π1 could modify occur in G1, and

(ii) G2 contains all the assignments in G1 which a plan for Π2 might modify.

Example 28. Consider Π1 and Π2 from Examples 24 and 25 respectively. N (Π1) = {v3, v1, v2}
and N (Π2) = G1 = {v4, v5}. Since G1�

N (Π2) = G1, (I2�
Π1)�N (Π2) = G1, G1�

Π2 = G1 and
G2�

Π1 = G1, we have Π1

�

Π2.

Writing
→
π i_

→
π j for concatenation of plans

→
π i,
→
π i+1 . . .

→
π j , a simple inductive argument gives

the following:

Lemma 8. Let Π1 . . .ΠN be a set of problems satisfying Πj

�

Πk for all j < k ≤ N . If for
all 1 ≤ i ≤ N , state x satisfies Ii ⊆ x,

→
π i solves Πi and sat-pre(N (Πi),

→
π i) holds, then

ex(x,
→
π 1_

→
πN)�Gi = Gi.

Proof. By induction on N . First, note ex(x,
→
π i)�

Gi = ex(Ii,
→
π i)�

Gi . Our proof is by induction
on N , and the base case N = 1 is trivial. We now show that if the theorem is true for N , then the
theorem also holds for N + 1. Below, let x′ = ex(x,

→
π 1_

→
πN).

Note N (ΠN+1) ⊆ x′, because for each i :

(i) assignments modified by
→
π i whose variables are the subject of a needed assignment from

ΠN+1 are in Gi, because Πi

�

ΠN+1 and thus Gi�N (ΠN+1) = (IN+1�
Πi)�N (ΠN+1)

(ii) the goals of any Πi are in x′ because the inductive hypothesis gives x′�Gi = Gi

(iii) any assignments in IN+1 not modified by exeuction
→
π 1_

→
πN from x are in x′, because

IN+1 ⊆ x.

Because
→
πN+1 is a plan for ΠN+1, ex(x′,

→
πN+1)�GN+1 = GN+1.

Since Πi

�

ΠN+1, any assignment in x′ that is in some Gi is also in ex(x′,
→
πN+1). The in-

ductive hypothesis gives Gi = x′�Gi thus Gi = ex(x′,
→
πN+1)�Gi . Because ex(x,

→
π 1_

→
πN+1) =

ex(x′,
→
πN+1) we have ex(x,

→
π 1_

→
πN+1)�Gi = Gi.

Take problem Π and a set of problems Π, we say that Π covers Π iff ∀g ∈ G. ∃Π′ ∈ Π. g ∈ G′
and ∀Π′ ∈ Π. Π′ ⊆ Π. I.e., every goal from Π is stated in one or more members of Π, a set of
subproblems of Π.

Theorem 17. Consider a set Π1 . . .ΠN of problems that covers Π, satisfying Πj

�

Πk

for all j < k ≤ N . For 1 ≤ i ≤ N let
→
π i be a plan for Πi, then

rem-condless(N (Π1),
→
π 1)_rem-condless(N (ΠN),

→
πN) is a plan for Π, where for an action

sequence
→
π and a state x, rem-condless(x,

→
π) denotes

→
π , but without the actions whose precon-

ditions are not satisfied during executing
→
π from x.

This theorem follows directly from the fact that the set of problems covers Π and from Lemma 8.
We now address the question: When can plans for a set of isomorphic subproblems be con-

catenated to provide a concrete plan? We provide sufficient conditions in terms of the concepts of
common and sustainable variables.

§4.7 Experimental Results 61

Definition 35 (Common Variables). For a set of instantiations ∆, the set of common variables,
written

⋂
v ∆, comprises variables in

⋃
t∈∆R(t) that occur in the ranges of more than one

member of ∆.

Definition 36 (Sustainable Variables). A set of variables vs is sustainable in a problem Π iff
I�vs = G�vs .

Theorem 18. Take problem Π, partition vs1..n of D(Π) where the quotient Π/vs1..n(= Π′) is
well-defined, with solution

→
π
′
, and consistent instantiations ∆. Suppose {tLΠ′M | t ∈ ∆}(=

Π) covers Π, and QL
⋂

v ∆M ∩ D(N (Π′))—i.e., based on Definition 30, the orbits of common
variables from needed assignments—are sustainable in Π′. Then any concatenation of the plans
{rem-condless(N (tLΠ′M),tL

→
π
′
M | t ∈ ∆} solves Π.

Proof. Identify the elements in ∆ by indices in {1..|∆|}. Let k ∈ {1..|∆|} and Πk = tkLΠ′M,
and note R(tk) = D(Πk). Take ti,tj ∈ ∆, where i, j ∈ {1..|∆|} and i 6= j. We first show
that Πi

�

Πj . For any vs ∈ vs1..n, ti(vs) = tj(vs) if ti(vs) ∈ R(ti) ∩ R(tj). Therefore,
Ii�

Πj = Ij�
Πi and Gi�Πj = Gj�

Πi , providing the right conjunct in Definition 34. For the left
conjunct, note D(N (Πj)) ⊆ D(Πj) and D(Πi) ∩ D(Πj) ⊆

⋂
v ∆. The sustainability premise—

Q(
⋂

v ∆)∩D(N (Π′)) is sustainable in Π′—then provides that D(Πi)∩D(N (Πj)) is sustainable
in Πi—i.e., Ii�N (Πj) = Gi�

N (Πj). Thus Gi�N (Πj) = (Ij�
Πi)�N (Πj), and we conclude Πi

�

Πj .

Since a plan tkL
→
π
′
M solves tkLΠ′M, (tkLΠ′M).I ⊆ Π.I , therefore as per Theorem 17 a solution to

Π is rem-condless(N (t1LΠ
′M),t1L

→
π
′
M)_rem-condless(N (tN LΠ′M),tN L

→
π
′
M).

In practice we take vs∗ = QL
⋂

v ∆M∩D(N (Π/vs1..n)), and augment the goal of the quotient
Π/vs1..n by adding (Π/P).I�vs∗ . Call the resulting problem Πq and its solution

→
π
q
. Theorem 18

shows that any concatenation of the plans {rem-condless(tLΠqM,tL
→
π
q
M) | t ∈ ∆} solves Π.

Thus, the proposed algorithm is sound.

Example 29. Take Π1, vs1..n, t and t′ from Example 27. There is one common variable,
{v3} =

⋂
v ∆ from the orbit {p1} = QL

⋂
v ∆M. Here N (Π1/vs1..n) = {p1, p2}, and the or-

bit of the common needed variable is {p1} = QL
⋂

v ∆M ∩ N (Π1)/vs1..n. To solve Π1 via solving
Π1/vs1..n, we augment the goal (Π1/vs1..n).G with the assignment to p1 in (Π1/vs1..n).I . The
resulting problem, Πq1, is equal to Π1/vs1..n except that it has the goals Π

q
1.G = {p1, p3}. A

plan for Π
q
1 is

→
π
q

= ({p1, p2}, {p3, p1})(∅, {p1}), and two instantiations of it are tL
→
π
q
M =

({v3, v1}, {v4, v3})(∅, {v3}) and t′L
→
π
q
M = ({v3, v2}, {v5, v3})(∅, {v3}). Concatenating tL

→
π
q
M

and t′L
→
π
q
M in any order solves Π1.

4.7 Experimental Results

Implemented in C++,1 our approach uses: NAUTY\TRACES by McKay and Piperno (2014) to
calculate symmetries; Z3 by De Moura and Bjørner (2008) to find isomorphic subproblems; and
the initial-plan search by LAMA by Richter and Westphal (2010) as the base planner. We limit
base planner runtimes to 30 minutes.

By running our algorithm, we obtained a set of benchmarks with soluble descriptive quotients
whose solutions can be instantiated to concrete plans. That set includes 439 problems, from 16 IPC
benchmarks and 4 benchmarks from Porco et al. (2013). In all our experimentation we identified
120 instances where we were able to confirm that the descriptive quotient does not have a solution

1Found at the public repository bitbucket.org/MohammadAbdulaziz/planning.git in the directory
codeBase.

bitbucket.org/MohammadAbdulaziz/planning.git
codeBase

62 Compositional Computation of Reachability in the Presence of Repetitive Symmetry

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 2000 4000 6000 8000 10000 12000 14000 16000

C
o
u
n
t

o
f

A
ct

io
n
s

in
 Q

u
o
ti

e
n
t

Count of Actions in Concrete Problem

Number of Actions in Problem Description

(a)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 2000 4000 6000 8000 10000 12000 14000 16000

C
o
u
n
t

o
f

P
ro

p
o
si

ti
o
n
s

in
 Q

u
o
ti

e
n
t

Count of Propositions in Concrete Problem

Propositions in Problem Descriptions

(b)

Figure 4.4: (a) Scatter-plot comparing the number of actions in problem posed by descriptive quotient vs.
concrete problem, with red line plotting f(x) = x. (b) Scatter-plot comparing the number of state variables
in problem posed by descriptive quotient vs. concrete problem, with red line plotting f(x) = x.

and the concrete problem does. Figure 4.4 plots the sizes in terms of both, the number of actions
and the number of state variables, of concrete and quotient problem descriptions. The plotted data
shows that the descriptive quotient can be much smaller than its concrete counterpart. In just over
15% of instances the quotient has less than half the number of actions. Here, we also analyzed
what aspects of our approach are computationally expensive. In 79% of cases 99% of the runtime
of our approach is executing the base planner. In 96% of cases 95% of the runtime of our approach
is executing the base planner. Overall, 3% of time is spent in instantiation and finding chromatic
numbers.

We examined where our approach is comparatively scalable and fast compared to the base
planner. For 430 instances where the base planner and our approach are successful, Figure 4.5a
displays the speedup factors where planning via the descriptive quotient is comparatively fast.
Overall, for 68% of instances our approach is comparatively fast, and in 15% planning via the
quotient is at least twice as fast. With few exceptions, instances where our approach is at least
twice as fast are from GRIPPER, HIKING, MPRIME, MYSTERY, PARCPRINTER, PIPESWORLD,
TPP and VISITALL. In 5 problems from HIKING, 2 from PARCPRINTER, 1 from TETRIS and
1 from KCOLOURABILITY, the base planner cannot solve the concrete problem, but can solve
the quotient. Planning via the quotient can also be slow, primarily due to the extra cost of finding
symmetries,2 and because LAMA is heuristic and occasionally finds that the quotient poses a more
challenging problem. Figure 4.5b provides the dual to Figure 4.5a, showing cases where planning
directly for the concrete problem is comparatively fast. This is the case in 32% instances, and
indeed in 2% our approach is at least twice as slow.

Finally, it is worth highlighting the difference between searching for a plan in the state space of
the descriptive quotient versus approximate orbit search—i.e., searching for a plan in an approx-
imation of the quotient state space—as is done in the state-of-the-art techniques for exploiting
symmetries in planning.3 In comparing those approaches, we measure the number of states ex-
panded using a breadth-first search. We consider the IPC instances GRIPPER-20 and MPRIME-21,
the largest instances from domains GRIPPER and MPRIME reported solved by Pochter et al. (2011)
using breadth-first search. Those authors report the number of states expanded to be 60.5K and
438K, respectively. Using the same search to solve the problem posed by our descriptive quotient,

2If symmetries are given as part of the problem description, or if one resorts to more heuristic methods of discovering
them, such as those described by Guere and Alami (2001); Fox and Long (2002), this burden is relieved.

3Such a comparison is admittedly unfair, because the problem posed by a descriptive quotient is not a bisimulation
of the concrete problem.

§4.8 Conclusions and Future Work 63

Speedup With Symmetry Exploitation

Speedup Factor = (Quotient−runtime / Concrete−runtime)

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

12

(a)

Speedup Without Symmetry Exploitation

Speedup Factor = (Concrete−runtime / Quotient−runtime)

F
re

qu
en

cy

0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

(b)

Figure 4.5: (a) Plots histogram of speedup factors experienced when planning with symmetry exploitation,
reporting only for instances where planning via the quotient is faster, and only for instances where the base
planner takes > 5 seconds. (b) Plots histogram of speedup factors experienced when planning without
symmetry exploitation, reporting only for instances where planning for the concrete problem directly is
faster, and only for instances where the base planner takes > 5 seconds.

the base planner expands 6 and 203K states, respectively.

4.8 Conclusions and Future Work

We introduced a new compositional approach for AI planning that is based on a new abstrac-
tion, the descriptive quotient, as well as exploiting state variable symmetries. A concrete plan
is obtained by concatenating instantiations of the plan for the descriptive quotient. Compared to
mainstream symmetry breaking techniques this has multiple advantages. Firstly, we do not have
to solve the NP-hard constructive orbit problem for every orbit of symmetric states. Secondly, the
size of the descriptive quotient’s state space can be exponentially smaller than that of the quotient
system, in which a plan is searched for, by other symmetry breaking algorithms. However, effec-
tively this approach breaks a specific type of symmetries: repetitive symmetries, which is when
the planning problem is constituted of multiple isomorphic subproblems. Also it is incomplete,
as the descriptive quotient may not have a plan, while the concrete problem is soluble. Nonethe-
less, we experimentally show that this approach is successful in 70% of standard international
planning competition benchmarks with symmetries, where it brings significant reduction in plan
search time.

We suppose a fruitful research direction is exploring descriptive quotients: to develop heuris-
tics, to characterise tractable classes, and to develop bounding methods. Also an interesting ques-
tion is how much does the quality (in terms of length and cost) of the plans computed by this
technique compare to that of plans computed by other symmetry breaking techniques. We sup-
pose that this question is very strongly related to either proving or disproving Conjecture 1

64 Compositional Computation of Reachability in the Presence of Repetitive Symmetry

Chapter 5

Formalisation

In order to formally verify the correctness of our compositional algorithms we build a library of
formal proofs on factored transition systems in the Higher Order Logic (HOL) interactive theorem
prover HOL4 by Slind and Norrish (2008). There is a rich body of previous formalisation of
concepts related to transition systems in different logics and theorem proving systems. A lot of
that work (e.g. Paulson (2015) and Esparza et al. (2013)) focuses on classical textbook results on
finite automata and reachability of states within those automata in the setting of model checking
LTL formulae. However, we believe that our work is the first to formalise transition systems
in their factored representation, and to focus on the topological properties of their state spaces,
in addition to reachability within them. In this chapter we discuss our formalisation of factored
transition systems and how we used it to formally verify some of the main algorithms we discussed
earlier. The general organisation of the library is shown in Figure 5.1 and the size and description
of each theory is in Table 5.1.

Figure 5.1: The organisation of the different theories concerning factored transition systems. An edge from
one theory to another indicates the dependence of the latter on the former.

65

66 Formalisation

Theory Size (LOC) Description
actionSeqProcess 432 Theory on different functions that process action se-

quences, e.g. remove actions without effects.
acycDepGraph 1587 Theory related to the top-down algorithm.
acyclicity 130 Theory regarding acyclic digraphs represented as

topologically sorted lists.
acycSspace 346 Theory related to the S-algorithm that exploits acyclic-

ity in the state space.
boundingAlgorithms 644 Theory related to the hybrid algorithm.
dependency 83 Basic results related to variable dependency.
depGraphVtxCut 582 Results related to vertex cutting in the dependency

graph.
factoredSystem 1335 Basic results and definitions related to factored transi-

tion systems.
instantiation 1007 Results related to instantiation of planning problems.
invariantsPlusOne 300 Theory related to the cardinality of sets of states with

SAS+ like invariant properties.
invariantStateSpace 121 A bound on the size of a state space of a planing prob-

lem that has a SAS+ representation derived invariant
property.

parentChildStructure 1304 Formalisation of bound compositionality in the parent-
child structure and the stitching function.

planningProblem 994 Formalisation of planning problems on top of factored
transition systems.

prodValidtd 451 Verification of the fact that the product of some pro-
jections’ traversal diameters is an upper bound on the
concrete system’s traversal diameter.

SCC 46 Basic results related to strongly connected compo-
nents.

SCCsystemAbstraction 1384 Results related to computing system abstractions
based on computing strongly connected components
of dependency graphs.

stateSpaceProduct 358 Defining the state space product operator and some ba-
sic facts about it.

systemAbstraction 1135 Definition of different abstraction concepts like proje-
tion and snapshotting, and verifying some basic facts
about them.

topologicalProps 879 Definition of the diameter, sublist diameter, recurrence
diameter, and the traversal diameter and verifying ba-
sic theory about them.

Table 5.1: A table showing the sizes of different theories and their content.

§5.1 Related Work 67

HOL4 Notation All statements appearing with a turnstile (`) are HOL4 theorems, automatically
pretty-printed to LATEX.

5.1 Related Work

Interactive theorem proving systems (e.g. Gordon and Melham (1993); Paulson (1994); Bertot
and Castéran (2004)) have been used in mechanisation and verification in very diverse fields. Fun-
damental results in different branches of mathematics have been verified. For example Dufourd
(2009) formalised a discretised form of the Jordan Curve theorem. In mathematical analysis, Har-
rison (2007) formalised Cauchy’s integral theorem, and Abdulaziz and Paulson (2016) formalised
Green’s theorem. In Bezem and Hendriks (2008) a coherent logic based theorem prover was
implemented and used to mechanise Hessenberg’s theorem. Also the work by McKinna and Pol-
lack (1999) shows a mechanisation of a simplified version of beta reduction in Lambda Calculus.
Gamboa (2009) presents a mechanisation of the Powerlist Algebra, which is a data structure used
for representing concurrent recursive algorithms as well as proving their correctness. Synthetic
domain theory was formalised in Taylor (1991).

Many sohpisticated algorithms have also been mechanised in the literature. Techniques for
theorem proving such as SLD-resolution have been mechanised in Jaume (1999), where the theo-
rem prover Coq was used. The work in Kamareddine and Qiao (2003) presents a formalisation of
the termination proof of two styles of substitution calculi. Manolios and Vroon (2005) provided
libraries for doing basic tasks in ordinal arithmetic, and mechanised them using ACL2. For propo-
sitional satisfiability, Marić (2009); Blanchette et al. (2016) formalised SAT solvers from the basic
DPLL solver up to modern solvers which have features such as clause learning or backjumping
and other features.

Different work, like Klein et al. (2009); Hales et al. (2011); Gonthier (2008) , show that the
scale of mechanisation projects is continuously growing. Bauer et al. (2013) provide a mechani-
sation of data flow analysis for the purpose of building more secure software systems. In Gonthier
(2008) and Hales et al. (2011), the proof Kepler’s conjecture and the four colour theorem, respec-
tively, are verified, which are major mathematical results.

Most relevant to our work are formalisations of automata theory and their reachability prop-
erties, in the context of model checking. Textbook results in automata theory were formalised in
many approaches. For example, the Myhill-Nerode theorem was formalised in intuitionistic logics
by Constable et al. (2000) and Doczkal et al. (2013). It was also formalised by Paulson (2015) in
Isabelle/HOL. He used hereditarily finite sets as the type of states, unlike our formalisation which
uses finite maps. Furthermore, Wu et al. (2011) formally prove that theorem using a formalisation
of regular expressions. Results and algorithms related to reachability in automata were formalised
by Sprenger (1998); Schimpf et al. (2009); Esparza et al. (2013), where the main goal of those
authors was to obtain formally verified model checking algorithms and implementations.

5.2 Factored Transition Systems in HOL4

We formalise propositionally factored transition systems by first defining states to be finite
maps α 7→ β from polymorphic type α to polymorphic type β.1 An action is a pair of
such states (α 7→ β) × (α 7→ β), and a factored transition system is a set of actions
(α 7→ β) × (α 7→ β) → bool. We define the set of valid states and valid action sequences
as follows:

1If we would model STRIPS or SMV transition systems, β would be instantiated with bool.

68 Formalisation

HOL4 Definition 1 (Factored System).

U(δ) = {x | D(x) = D(δ)}

δ∗ = {→π | set
→
π ⊆ δ}

Action execution and action sequence execution are defined as follows:

HOL4 Definition 2 (Execution).

state-succ x (p,e) = if p v x then e] x else x

ex(x ,π::
→
π) = ex(state-succ x π,

→
π)

ex(x ,[]) = x

The result of executing an action (p,e) on a state x depends on whether the preconditions of the
action are satisfied by the state or not, which is modelled by the p v x relation. If the state
satisfies the preconditions then the state resulting from the execution is the same as the original
state, but amended by the effects of the executed action, otherwise the result of the execution is
the same as the original state. The way we model amending the state by an action’s effect is by
using the finite map union operation e] x . We note that this finite map union operation is not
commutative, where it gives precedence to the assignments of its first argument. For an action
sequence

→
π , the execution semantics are lifted in a straightforward way. A sanity check of our

execution semantics is the following theorem, which states that the result of executing a valid
action sequence on a valid state is also a valid state.

` →π ∈ δ∗ ∧ x ∈ U(δ) ⇒ ex(x ,
→
π) ∈ U(δ)

Note that we do not restrict the codomain of states to be bool. This is because a lot of the theory
we develop applies to factored systems, regardless of the codomain of the state, so for example, a
lot of the theory developed applies to hybrid systems.

5.2.1 Topological Properties

In HOL4, we define the diameter in the following way:

HOL4 Definition 3 (Diameter).

d(δ) = max {min (Πd (x ,
→
π ,δ)) | x ∈ U(δ) ∧ →

π ∈ δ∗ }

where Πd is defined as

Πd (x ,
→
π ,δ) = {|→π

′
| | ex(x ,

→
π
′
) = ex(x ,

→
π) ∧ →

π
′
∈ δ∗ }

In the above definition, we first define the function Πd which returns, for a state x , an action
sequence

→
π , and a factored system δ, the set of lengths of all valid action sequences in δ∗ that

would yield the same execution result as
→
π , if executed on x . Accordingly, the smallest member

of Πd (x ,
→
π ,δ) would be the length of the shortest action sequence equivalent to

→
π in terms of

execution on x . The diameter then would the largest such length of the shortest equivalent ac-
tion sequence for all pairs of states and valid action sequences. In a similar approach the sublist
diameter is defined as follows:

HOL4 Definition 4 (Sublist Diameter). We first define the sublist relation between lists as follows:

§5.2 Factored Transition Systems in HOL4 69

[] �· l1 ⇐⇒ T
h:: t �· [] ⇐⇒ F
x :: l1 �· y :: l2 ⇐⇒ x = y ∧ l1 �· l2 ∨ x :: l1 �· l2

Based on that the sublist diameter is defined as:

`(δ) = max {min Π�·(x ,
→
π) | x ∈ U(δ) ∧ →

π ∈ δ∗ }

where Π�· is defined as

Π�·(x ,
→
π) = {|→π

′
| | ex(x ,

→
π
′
) = ex(x ,

→
π) ∧ →

π
′
�· →π }

The way we define the sublist diameter resembles the way we defined the diameter. We note
however that in Π�· we need not add the condition on the equivalent action sequences to be valid
action sequences from δ∗ since this is implied by the fact that they are also sublists of the given
action sequence

→
π .

We define the recurrence diameter and the traversal diameter in a significantly different ap-
proach, since they are both best specified in terms of paths of states, and because in both of them
we do not need to nest max and min. The recurrence diameter is defined as follows:

HOL4 Definition 5 (recurrence Diameter).

rd(δ) = max {|p| − 1 | valid-path δ p ∧ ALL-DISTINCT p }

where

valid-path δ [] ⇐⇒ T
valid-path δ [x] ⇐⇒ x ∈ U(δ)

valid-path δ (x1 :: x2 :: rest) ⇐⇒
x1 ∈ U(δ) ∧ (∃π. π ∈ δ ∧ ex(x1 ,[π]) = x2) ∧
valid-path δ (x2 :: rest)

The predicate valid-path indicates that a certain list of states can be an execution trace of a valid
action sequence in the given system, and the predicate ALL-DISTINCT indicates that all members
of a certain list are distinct.

Lastly, we define the traversal diameter as follows:

HOL4 Definition 6 (Traversal Diameter).

td(δ) = max {|ss (x ,
→
π)| − 1 | x ∈ U(δ) ∧ →

π ∈ δ∗ }

where

ss (x ,
→
π) = set (

→
ss (x ,

→
π))

and
→
ss (x ,π::

→
π) = x ::

→
ss (state-succ x π,

→
π)

→
ss (x ,[]) = [x]

In the above definition the functions
→
ss and ss return the list of states and the set of states, respec-

tively, traversed by executing an action sequence on a state.
Since we are mainly interested in formally verifying the validity of HYB, we only formalised

the different upper-bounding relations between different topological properties, leaving out the
exponential separations between them. The formalised bounding relations are expressed in the
following theorem.

70 Formalisation

HOL4 Theorem 1.

` FINITE δ ⇒ d(δ) ≤ `(δ) ∧ `(δ) ≤ rd(δ)

We note that a sufficient condition for the different topological properties to exist, δ has to be
finite and the codomain of the different states has to be bool, which is why those conditions exist
in the theorem above. This guarantees that the argument sets to the functions max and min are
finite. This is not the only approach to guarantee that the topological properties are well defined.
However, it suits our needs since it models the factored systems on which we applied our algo-
rithms. As sanity checks to verify that our definitions of the different topological properties have
the desired semantics, we prove the following theorems for the sublist diameter and the traversal
diameter. The first theorem says that any valid action sequence has a sublist of it that achieves
the same execution outcome, and whose length is bounded by the sublist diameter. The second
one says that executing any valid action sequence on a valid state traverses no more states than the
traversal diameter.

` FINITE δ ∧ x ∈ U(δ) ∧ →
π ∈ δ∗ ⇒

∃→π
′
. ex(x ,

→
π) = ex(x ,

→
π
′
) ∧ →

π
′
�· →π ∧ |→π

′
| ≤ `(δ)

` FINITE δ ∧ x ∈ U(δ) ∧ →
π ∈ δ∗ ⇒ |ss (x ,

→
π)| − 1 ≤ td(δ)

Also, we prove the following theorems to aid us in deriving the compositional upper bounds of
both the sublist diameter and the traversal diameter. Both theorems state sufficient conditions for
upper-bounding the two topological properties. For the sublist diameter, if for some constant k ,
there is a sublist of every valid action sequence that achieves the same execution outcome whose
length is bounded by k , then the sublist diameter is bounded by k . For the traversal diameter, if
there is some constant k that bounds the number of states traversed by executing every valid action
sequence, then the traversal diameter is bounded by one less than k .

` FINITE δ ∧
(∀→π x.

x ∈ U(δ) ∧ →
π ∈ δ∗ ⇒

∃→π
′
. ex(x ,

→
π) = ex(x ,

→
π
′
) ∧ →

π
′
�· →π ∧ |→π

′
| ≤ k) ⇒

`(δ) ≤ k

` FINITE δ ∧
(∀ x

→
π.

sat-pre (x ,
→
π) ∧ x ∈ U(δ) ∧ →

π ∈ δ∗ ⇒
|ss (x ,

→
π)| ≤ k) ⇒

td(δ) ≤ k − 1

Note that in the theorem for the traversal diameter, there is a requirement on the action sequence to
have all of its preconditions satisfied (sat-pre (x ,

→
π)). This is because in our execution semantics,

an action whose preconditions are not satisfied is executed, but with no effect. This means that
there can be action sequences with unbounded lengths, that contain actions that do not change the
state. This condition is formally defined as follows.

sat-pre (x ,(p,e)::
→
π) ⇐⇒

p v x ∧ sat-pre (state-succ x (p,e),
→
π)

sat-pre (x ,[]) ⇐⇒ T

§5.2 Factored Transition Systems in HOL4 71

5.2.2 Abstraction

An important concept for our work is abstraction of a factored system. The first type of abstraction
we consider is projection. To project a state x on a set of variables vs , we use the DRESTRICT
function that restricts the domain of a finite map to a set of variables vs , and it is pretty printed as
x�vs . For actions, action sequences, and factored systems, we defined projection as follows.

HOL4 Definition 7 (Projection). For an action

(p,e)�vs = (p�vs ,e�vs)

For an action sequence

((p,e)::
→
π)�vs = if D(e�vs) 6= ∅ then (p,e)�vs ::

→
π�vs else

→
π�vs

[]�vs = []

Letting fLtM denote the image of a function f on some set t, projection for a factored system is
defined as

δ�vs = (λπ. π �vs)LδM

For a set of states
→
x �vs = (λ x . x �vs)L

→
x M

The following theorems show some of the basic properties of the projection operation that we
defined.

` x ∈ U(δ) ⇒ x�vs ∈ U(δ�vs)

` →π ∈ δ∗ ⇒ →
π�vs ∈ δ �vs

∗

` (ex(x ,
→
π�vs))�vs = ex(x�vs ,

→
π�vs)

` sat-pre (x ,
→
π) ⇒ ex(x�vs ,

→
π�vs) = (ex(x ,

→
π))�vs

Note that in the theorems above that relate executing a concrete action sequence and its pro-
jection, there is the condition sat-pre (x ,

→
π). If this condition does not hold, some actions

in the concrete action sequence whose preconditions are not satisfied can have their precondi-
tions satisfied after projection; the projection would then be an incorrect presentation. This could
lead to a different execution outcome than the projection of the concrete execution outcome, i.e.
ex(x�vs ,

→
π�vs) = (ex(x ,

→
π))�vs does not hold unconditionally.

The second type of abstraction that we define is snapshotting.

HOL4 Definition 8 (Snapshotting). We first define the following relation between states:

agree x1 x2 ⇐⇒ ∀ v. v ∈ D(x1) ∧ v ∈ D(x2) ⇒ x1 ‘ v = x2 ‘ v

Based on that, a snapshot is defined as

δ|•x = {(p,e) | (p,e) ∈ δ ∧ agree p x ∧ agree e x }

The relation agree indicates that two states assign all variables in the intersection of their
domains to the same values. A snapshot of a factored system δ on a state x is the set of actions from
δ whose preconditions are enabled by x and that if executed they do not change the assignments
of variables in the domain of x . The following properties of the agreement relation between states
and the snapshot abstraction are sanity checks for the validity of our definitions.

72 Formalisation

` f1 v f2 ⇒ agree f1 f2

` →π ∈ δ∗ ∧ x ′ ∈ U(δ) ∧ x ∈ U(δ) ∧
(∀ p e. MEM (p,e)

→
π ⇒ agree e�vs x�vs) ∧ x ′�vs = x�vs ⇒

(ex(x ′,
→
π))�vs = x�vs

The second theorem above shows that if all actions in a sequence agree with a projection of an
initial state, then the result of executing that action sequence on that state will have the same
assignment to the initially agreed upon variables.

We lastly note that the diameter (resp. sublist diameter, recurrence diameter and traversal
diameter) of an abstract system obtained using one of the above abstractions is in general incom-
parable to that of the concrete system.

5.3 Formalising Compositional Upper-Bounding Algorithms

In this section we review our approach to formally verify the validity of different compositioanl
bounding approaches, including those computed by HYB.

5.3.1 Compositional Bounding in the General Case

We now discuss our formalisation of Theorem 3. That theorem states the validity of projection
based compositional bounding using the traversal diameter, and it shows that it is always sound
regardless of the dependency structure of the system under consideration. To formalise that theo-
rem, we closely follow the pen and paper proof and formalise the propositions on which it depends.
Formalising Proposition 1 and Proposition 2 is straightforward, unlike formalising Proposition 3
which warrants more detail. We first define the notion of a state space, which is a set of states that
all have the same domain, defined as follows.

HOL4 Definition 9 (State Space).

sspc
→
x vs ⇐⇒ ∀ x. x ∈ →

x ⇒ D(x) = vs

We then define the operation of multiplying two state spaces as follows.

HOL4 Definition 10 (State Space Multiplication).

(ss1 × ss2) = (λ (x1 ,x2). x1] x2)Lss1 × ss2M

We then extend that operation to sets of state spaces, following the approach by Nipkow and
Paulson (2005). We first define that product as the following inductive relation:

HOL4 Definition 11 (Set of State Spaces Multiplication).

PROD ∅ →x →
x

→
x /∈ SS ∧ PROD SS ss ′ ss ′′ ⇒ PROD (

→
x INSERT SS) ss ′ (

→
x × ss ′′)

Then we prove that this relation is unique, and use that uniqueness to redefine it as the function
PRODf. The approach in Nipkow and Paulson (2005) requires the operation to be commutative
and associative. The state space product as defined above is associative. However, to have com-
mutativity we assumed that the domains of the different state spaces are disjoint.

` (ss1 × (ss2 × ss3)) = ((ss1 × ss2) × ss3)

§5.3 Formalising Compositional Upper-Bounding Algorithms 73

` sspc ss1 vs1 ∧ sspc ss2 vs2 ∧ DISJOINT vs1 vs2 ⇒
(ss1 × ss2) = (ss2 × ss1)

Since the states traversed by executing any valid action sequence will always be a state space, the
following formalised version of Proposition 3 follows.

` FINITE VS ∧ (∀ vs ′. vs ′ ∈ VS ⇒ DISJOINT vs vs ′) ∧
(∀ vs vs ′.

vs ∈ VS ∧ vs ′ ∈ VS ∧ vs 6= vs ′ ⇒ DISJOINT vs vs ′) ∧⋃
(vs INSERT VS) = D(δ) ∧ x ∈ U(δ) ∧ →

π ∈ δ∗ ∧
sat-pre (x ,

→
π) ⇒

ss (x ,
→
π) ⊆ PRODf (λ vs. (ss (x ,

→
π)) �vs)LVS M (ss (x ,

→
π))�vs

Lastly, the formalised version of Theorem 3 is as follows.

HOL4 Theorem 2.

` FINITE VS ∧ FINITE δ ∧ vs /∈ VS ∧
(∀ vs ′. vs ′ ∈ VS ⇒ DISJOINT vs vs ′) ∧
(∀ vs vs ′.

vs ∈ VS ∧ vs ′ ∈ VS ∧ vs 6= vs ′ ⇒ DISJOINT vs vs ′) ∧⋃
(vs INSERT VS) = D(δ) ∧ vs /∈ VS ⇒
td(δ) ≤ Π (λ vs. td(δ�vs) + 1) (vs INSERT VS) − 1

5.3.2 Compositional Bounds in the Presence of Acyclicity

We now review our formalisation of acyclicity, Lemma 3, and Theorem 14. In HOL we model
a DAG with the predicate top-sorted-abs that means that l is a list of vertices of a digraph
topologically sorted w.r.t. to the binary relation R, which is taken to be the edge relation in the
digraph. This predicate is defined as follows in HOL:

HOL4 Definition 12 (DAG).

top-sorted-abs R (u1 :: A) ⇐⇒
EVERY (λ u2. ¬R u2 u1) A ∧ top-sorted-abs R A

top-sorted-abs R [] ⇐⇒ T

In the definition above, EVERY is a high-order predicate that, given a predicate and a list, returns
true if every member of the list satisfies the given predicate. The following basic properties hold
for DAGs.

` top-sorted-abs R (u1 :: A) ∧ u2 ∈ set A ⇒ ¬R u2 u1

` top-sorted-abs R (u:: A) ⇒ top-sorted-abs R A

Recall that one way to interpret both bounding functions N and S is as functions that compute
some form of weightiest paths in an acyclic graph, where every path is given a weight that depends
on the weights of the vertices and the number of edges that it traverses. However, both functions
operate on a DAG induced by different relations (dependency for N versus successor state for
S), weigh vertices with different functions (projection’s sublist diameter for N versus snapshot’s
sublist diameter for S), and combine those weights in different ways (multiply them and add for
for N versus add and take the maximum for S). To be able to factor what is common between
the two bounding functions and yet accommodate the difference between them, we defined the
following function.

74 Formalisation

HOL4 Definition 13 (Weightiest Longest Path).

wp R w g f u1 (u2 :: A) =
if R u1 u2 then g (f (w u1) (wp R w g f u2 A)) (wp R w g f u1 A)

else wp R w g f u1 A

wp R w g f u1 [] = w u1

This function takes as an argument the relation that induces the DAG R, the weighing function
w , and the two functions that combine the weights: g which combines weights of different paths;
and f which combines the weights of vertices on one path, as well as the vertex of interest v and
the DAG l . In order for wp to capture desired properties about S and N, we define the following
properties on the weight combination function.

geq-arg f ⇐⇒ ∀ x y. x ≤ f x y ∧ y ≤ f x y

increasing f ⇐⇒ ∀ e b c d. e ≤ c ∧ b ≤ d ⇒ f e b ≤ f c d

The previous definitions describe different notions of functions whose value is at least as big as
their arguments and functions that are non-decreasing. If the weight combination functions f and
g have those properties, the following basic properties hold for the abstract weighted longest path
function, and accordingly for Nsum and Smax.

` geq-arg g ⇒ w u ≤ wp R w g f u A

` geq-arg f ∧ geq-arg g ∧ (∀ u. u ∈ set A ⇒ ¬R u u) ∧ R u2 u1 ∧
u1 ∈ set A ∧ top-sorted-abs R A ⇒

f (w u2) (wp R w g f u1 A) ≤ wp R w g f u2 A

` increasing f ∧ increasing g ∧
(∀ u. u ∈ set A ⇒ w1 u ≤ w2 u) ∧ w1 u ≤ w2 u ⇒

wp R w1 g f u A ≤ wp R w2 g f u A

Formalising the Validity of Nsum

We now review our formalisation of the compositional bounding of the sublist diameter, for the
case of projections induced by an acyclic dependency graph. We defined dependency between
variables and dependency between sets of variables as follows.

HOL4 Definition 14 (Dependency). For two variables v1 and v2, we define dependency as2

v1 → v2 ⇐⇒
(∃ p e.

(p,e) ∈ δ ∧
(v1 ∈ D(p) ∧ v2 ∈ D(e) ∨ v1 ∈ D(e) ∧ v2 ∈ D(e))) ∨

v1 = v2

For sets of variables vs1 and vs1, we define

vs1 → vs2 ⇐⇒
∃ v1 v2. v1 ∈ vs1 ∧ v2 ∈ vs2 ∧ DISJOINT vs1 vs2 ∧ v1 → v2

2The definition of→ has an implicit δ parameter; however, we hide it using the ad hoc overloading ability in HOL.

§5.3 Formalising Compositional Upper-Bounding Algorithms 75

In the above defintion, DISJOINT is a predicate that, given two sets, returns true if they share
no elements.

Our proof of Theorem 8 depends on Lemma 3 whose proof depends on the following funda-
mental argument. Consider a set of variables vs with only incoming dependencies from all the
state variables in a system δ (a “parent-child” dependency structure). If for some

→
π ∈ δ∗ one is

to remove actions from the projection
→
π�vs , while preserving the projection’s execution outcome,

the restitching function can be used to “stitch” back the shortened projected action sequence into
→
π , producing an action sequence with the same execution outcome as

→
π , but with the redundant

actions removed. To formalise that, we formalise the parent-child dependency configuration and
the restitching function as follows:

HOL4 Definition 15 (Parent-Child Structure).

child-parent-rel (δ,vs) ⇐⇒ vs 6→ vs

HOL4 Definition 16 (Restitching Function).

(π′::
→
π
′
) H
vs

(π::
→
π) =

if varset-action (π,vs) then

if π′ = π�vs then π::
→
π
′
H
vs

→
π else (π′::

→
π
′
) H
vs

→
π

else π:: (π′::
→
π
′
) H
vs

→
π

[] H
vs

→
π = FILTER (λπ. ¬varset-action (π,vs))

→
π

(π′::
→
π
′
) H
vs
[] = []

where varset-action is defined as follows

varset-action ((p,e),vs) ⇐⇒ D(e) ⊆ vs

In words, the stitching function uses the first list as a guide: the second list of actions is filtered,
with each action in the first list meant to have a corresponding action in the second list. The for-
malised theorem stating the aforementioned functionality of the restitching function is as follows.
Its proof script is 1300 lines long, with comments, and it is our main tool to formally prove the
validity of Nsum as a bound.

HOL4 Lemma 1.

` child-parent-rel (δ,vs) ∧ x ∈ U(δ) ∧ no-effectless-act
→
π ∧

→
π
′
�· →π�vs ∧

→
π ∈ δ∗ ∧ (ex(x ,

→
π))�vs = ex(x�vs ,

→
π
′
) ∧

sat-pre (x ,
→
π) ∧ sat-pre (x ,

→
π
′
) ⇒

ex(x ,
→
π
′
H
vs

→
π) = ex(x ,

→
π)

In the previous statement, the predicate no-effectless-act
→
π asserts that the action sequence

has no actions with empty effects. As we sketched earlier in the proof summary of Lemma 3 in
Section 3.6, for a lifted dependency DAGAVS, we take every set of variables p ∈ AVS, and remove
all redundant actions whose effects are confined to p. As we describe in detail below, we use the
stitching function as our main proof tool to perform the action removal. To formalise this, we
define the following relation, which generalises the parent-child structure.

76 Formalisation

HOL4 Definition 17 (Generalised Parent-Child Structure). For a factored transition system δ and
two sets of variables vs1 and vs2, the generalised parent-child relation holds between vs1 and vs2

iff (i) vs2 6→ vs1, (ii) vs1 6→ (vs1 ∪ vs2), and (iii) no bidirectional dependencies exist between
any variable in vs2 and (vs1 ∪ vs2). Formally:

gen-parent-child (δ,p,c) ⇐⇒
DISJOINT p c ∧ c 6→ p ∧ p 6→ p ∪ c ∧
∀ v1 v2. v1 ∈ c ∧ v2 ∈ p ∪ c ⇒ v1 6→ v2 ∨ v2 6→ v1

Given the previous definition, the following lemma formally describes the process of removing
redundant actions affecting a set of variables p ∈ AVS.

Lemma 9. Let n(vs,
→
π) be the number of vs-actions contained within

→
π . Consider δ, in which

the generalised parent-child relation holds between sets of variables p and c. Then, any action
sequence

→
π has a sublist

→
π
′

that reaches the same state as
→
π starting from any state such that:

n(p,
→
π
′
) ≤ `(δ�p)(n(c,

→
π
′
) + 1) and n(p,

→
π
′
) ≤ n(p,

→
π).

A formal statement of that lemma follows:

` FINITE δ ∧ x ∈ U(δ) ∧ →
π ∈ δ∗ ∧ gen-parent-child (δ,p,c) ⇒

∃→π
′
.

n(p,
→
π
′
) ≤ `(δ�p) × (n(c,

→
π
′
) + 1) ∧ →

π
′
�· →π ∧

n(D(δ) \ p,
→
π
′
) ≤ n(D(δ) \ p,

→
π) ∧ ex(x ,

→
π
′
) = ex(x ,

→
π)

where

n(p,
→
π) = |FILTER (λπ. varset-action (π,p))

→
π |

Proof. The proof of Lemma 9 is constructive. Let
→
π c be a contiguous fragment of

→
π that has no

c-actions in it. Then perform the following steps:

• By the definition of `, there must be an action sequence
→
π p such that ex(s,

→
π p) =

ex(s,
→
π c�p), and satisfies |→π p| ≤ `(δ�p) and

→
π p �·

→
π c�p.

• Letting D ≡ D(δ), p 6→ D \ p \ c holds. Accordingly, from HOL4 Lemma 1,
→
π
′
c(=

→
π pH

p

→
π c�D\c) achieves the same D \ c assignment as

→
π c (i.e., ex(s,

→
π
′
c)�D\c =

ex(s,
→
π c)�D\c), and it is a sublist of

→
π c. Also, n(p,

→
π
′
c) ≤ `(δ�p) holds.

• Finally, because
→
π c has no c-actions, no c variables change along the execution of

→
π c and

accordingly any c variables in preconditions of actions in
→
π c always have the same assign-

ment. This means that
→
π
′
c H
D\c

→
π c will achieve the same result as

→
π c, but with at most `(δ�p)

p-actions.

Repeating the previous steps for each
→
π c fragment in

→
π yields an action sequence

→
π
′

that has at
most `(δ�p)(n(c,

→
π) + 1) p-actions. This is justified by the following lemma, where in this lemma

list-frag (l1,l2) means that list l2 is a contiguous sublist of l1.

` |FILTER P1 l | ≤ k1 ∧ (∀ x. x ∈ set l ⇒ P1 x ⇒ ¬P2 x) ∧
(∀ l ′.

list-frag (l ,l ′) ∧ EVERY (λ x. ¬P1 x) l ′ ⇒
|FILTER P2 l ′| ≤ k2) ⇒

|FILTER P2 l | ≤ (k1 + 1) × k2

§5.3 Formalising Compositional Upper-Bounding Algorithms 77

Because
→
π
′

is the result of consecutive applications of the stitching function, it is a sublist of
→
π .

Lastly, because during the previous steps, only p-actions were removed as necessary, the number
of c-actions in

→
π
′

is the same as their number in
→
π .

We can now describe how we use that result to prove Lemma 3, the main lemma stating the
validity of using Nsum to compositionally upper-bound the sublist diameter. The main idea is to
preform an induction on the acyclic lifted dependency graph, where for every node p ∈ AVS, the
redundant actions of p are removed using Lemma 9 after removing the redundant actions of its
children c. Then we use the stitching function to reconcile both shortened action sequences. We
now describe our formalisation of that proof. Below are the formal definitions of a lifted depen-
dency DAG, and the function N. They are instantiations of top-sorted-abs and wp, respectively,
where the relation that induces the digraph is the variable dependency relation. Also for N, the
functions for combining node weights g and f , are instantiated with addition and multiplication,
respectively3.

HOL4 Definition 9 (Lifted Dependency DAG).

dep-DAG δ AVS ⇐⇒
D(δ) =

⋃
(set AVS) ∧ ALL-DISTINCT AVS ∧

ALL-DISJOINT AVS ∧
top-sorted-abs (λ vs1 vs2. vs1 → vs2) AVS

In the above definition the predicates ALL-DISTINCT and ALL-DISJOINT return true if all
members of a given list are pairwise distinct and pairwise disjoint, respectively.

HOL4 Definition 10 (Acyclic Dependency Compositional Bound).

N〈b〉(vs) = wp (λ vs1 vs2. vs1 → vs2) (λ vs. b(δ�vs)) (+) (×) vs AVS

This is the formal statement of Lemma 3.

HOL4 Theorem 3.

` FINITE δ ∧ dep-DAG δ AVS ⇒ `(δ) < SUM (MAP N〈`〉 AVS) + 1

Before we discuss the formal proof, we first introduce the following notation. Let F (p, c,
→
π)

be the witness action sequence of Lemma 9. We know that:

• ex(s, F (p, c,
→
π)) = ex(s,

→
π),

• n(p, F (p, c,
→
π)) ≤ `(δ�p)(n(c,

→
π) + 1).

• F (p, c,
→
π) �· →π , and

• n(p, F (p, c,
→
π)) ≤ n(p,

→
π).

Proof of Lemma 3. Firstly, for brevity, for a set of variables vs , in the rest of this proof we write
N〈`〉(vs) as a short-hand for N〈`〉(vs, δ, AVS).

Our proof of this lemma follows a constructive approach where we assume we have an action
sequence

→
π ∈ δ∗ and a state s ∈ U(δ). The goal of the proof is to find a witness sublist,

→
π
′
, of

→
π

such that ∀ vs ∈ AVS. n(vs,
→
π
′
) ≤ N〈`〉(vs) and ex(s,

→
π) = ex(s,

→
π
′
). We proceed by induction

3N has δ and AVS parameters, but we hide them with HOL’s ad hoc overloading ability.

78 Formalisation

on V (AVS) assuming it is topologically sorted in a list lVS (without loss of generality since AVS is
a DAG). The base case is the empty list [], in which case D(δ) = ∅ and accordingly `(δ) = 0.

In the step case, we assume the result holds for any factored system for which l′VS is a topolog-
ically sorted vertices list of one of its lifted dependency graphs. We then show that it also holds
for δ, a factored system whose dependency graph’s vertices are topologically sorted into vs :: lVS.
Let vs ≡

⋃
lVS. Since lVS is a topologically sorted vertices list of a lifted dependency graph of

δ�vs , the induction hypothesis applies. Accordingly, there is
→
π vs ∈ δ�vs

∗ such that ex(s,
→
π vs) =

ex(s,
→
π�vs),

→
π vs �·

→
π�vs , and ∀ vs ′ ∈ lVS. n(vs ′,

→
π
′
) ≤ N〈`〉(vs ′, δ�vs , AVS) ≤ N〈`〉(vs ′). Since

vs :: lVS is topologically sorted, vs 6→ vs holds. Letting
→
π
′
vs =

→
π vs H

vs

→
π , from HOL4 Lemma 1

we have ex(s,
→
π
′
vs) = ex(s,

→
π). Furthermore, ∀vs ′ ∈ lVS. n(vs ′,

→
π
′
vs) ≤ N〈`〉(vs ′) and

→
π
′
vs �·

→
π .

Let C ≡
⋃

childrenAVS(vs). The last step in this proof is to show that F (vs, C,
→
π
′
vs) is the re-

quired witness, which is justified because the generalised parent-child relation holds for δ, vs and
C. Since the relations =, ≤ and �· are transitive, we have

• ex(s,
→
π) = ex(s, F (vs, C,

→
π
′
vs)),

• n(vs, F (vs, C,
→
π
′
vs)) ≤ `(δ�vs)(n(C,

→
π
′
vs) + 1) = `(δ�vs)(

∑
c∈C n(c,

→
π
′
vs) + 1),

• F (vs, C,
→
π
′
vs) �· →π , and

• n(vs, F (vs, C,
→
π
′
vs)) ≤ n(vs,

→
π
′
vs).

Since
∑

vs′∈lVS n(vs ′,
→
π
′
vs) = n(vs,

→
π
′
vs), then ∀ vs ′ ∈ lVS. n(vs ′,

→
π
′
vs) ≤ N〈`〉(vs ′) and

n(vs, F (vs, C,
→
π
′
vs)) ≤ `(δ�vs)(

∑
c∈C N〈`〉(c)) hold. Therefore F (vs, C,

→
π
′
vs) is an action se-

quence demonstrating the needed bound.

Formalising the Validity of Smax

To formalise compositional upper-bounding under state space acyclicity, we again use
top-sorted-abs and wp to formalise the digraph modelling the state space and the function S,
respectively. In this case, the relation that induces the digraph is the successor relation on states.
We note that in order for us to use the second property of wp, the relation the induces the digraph
needs to be irreflexive, which is why the set of successors of a state is defined to not include that
state. For S, the vertex weight combination functions g and f are instantiated by a function that
chooses the maximum of two arguments and the addition function, respectively. Formally this is
defined as follows4

HOL4 Definition 11 (Acyclic System State Space).

sspace-DAG δ
→
x ⇐⇒ set

→
x = U(δ) ∧ top-sorted-abs (succ δ)

→
x

where

succ δ x = state-succ x LδM \ {x }

HOL4 Definition 12 (Acyclic System Compositional Bound).

S〈b〉(x) = wp (succ δ�vs) (λ x. b(δ|•x)) MAX (λ x y. x + y + 1) x
→
x

4S has vs , δ and
→
x parameters, but we hide them with HOL’s ad hoc overloading ability.

§5.3 Formalising Compositional Upper-Bounding Algorithms 79

Formalising Theorem 14 is a straightforward implementation of the proof discussed in Sec-
tion 3.6.2. Proposition 5 follows from the properties of wp shown earlier as well as HOL4 Defi-
nition 12. To formalise the other propositions we define the function ∂, that gives the number of
changes in the assignments of a set of variables vs if an action sequence

→
π is executed on a state

x , as follows

HOL4 Definition 13 (Subsystem Trace).

∂ (π::
→
π) vs x =

if (state-succ x π)�vs 6= x�vs then
state-succ x π:: ∂

→
π vs (state-succ x π)

else ∂
→
π vs (state-succ x π)

∂ [] vs x = []

Proposition 6, Proposition 7 are formalised as follows.

HOL4 Proposition 1.

` FINITE δ ∧ ∂
→
π vs x = [] ∧ sat-pre (x ,

→
π) ∧ x ∈ U(δ) ∧

→
π ∈ δ∗ ⇒
∃→π
′
.

ex(x�D(δ|•x�vs),
→
π) = ex(x�D(δ|•x�vs),

→
π
′
) ∧ →

π
′
�· →π ∧

|→π
′
| ≤ `(δ|•x�vs)

HOL4 Proposition 2.

` ∂
→
π vs x = x ′::

→
x ⇒

∃→π 1 π
→
π 2.

→
π =

→
π 1 ++ π::

→
π 2 ∧ ∂

→
π 1 vs x = [] ∧

state-succ (ex(x ,
→
π 1)) π = x ′ ∧

∂
→
π 2 vs (state-succ (ex(x ,

→
π 1)) π) =

→
x

Note that in the conclusions of the previous formalised statements there is an extra requirement
on the witness action sequence: that it is a sublist of the original sequence. This is one difference
from the proof discussed of Theorem 13 in Section 3.6.2 and it is because in the earlier proof the
aim is to prove the validity of Smax as a compositional bound on the diameter, while here we prove
its validity as an upper bound on the sublist diameter. Other than this extra conclusion, the proofs
of Theorem 13 and Theorem 14 are the same. Lemma 6 is then formalised as follows:

HOL4 Lemma 2.

` FINITE δ ∧ sspace-DAG δ�vs
→
x ∧ x ∈ U(δ) ∧ →

π ∈ δ∗ ⇒
∃→π
′
. ex(x ,

→
π
′
) = ex(x ,

→
π) ∧ →

π
′
�· →π ∧ |→π

′
| ≤ S〈`〉(x�vs)

Finally, based on HOL4 Lemma 2 the formalised statement of Theorem 14 is as follows:

HOL4 Theorem 4.

` FINITE δ ∧ sspace-DAG δ�vs
→
x ⇒

`(δ) ≤ max {S〈`〉(x ′) | x ′ ∈ U(δ�vs)}

80 Formalisation

Formalising the Validity of HYB

We formalise HYB as follows:

HOL4 Definition 14 (The Hybrid Algorithm).

HYB f1 f2 δ =
if FINITE δ then

if ∀ vs. vs ∈ set (f1 δ) ⇒ vs ⊂ D(δ) then
(let

AVS = f1 δ

in
SUM

(MAP
(N

(λ δ′.
if ∃ vs. vs ∈ set AVS ∧ δ′ = δ�vs then

HYB f1 f2 δ′

else 0) δ AVS) AVS))

else if
f2 δ 6= ∅ ∧ ∀ vs

→
x x. (vs,

→
x) ∈ f2 δ ∧ x ∈ set

→
x ⇒ δ|•x ⊂ δ

then
(let

(vs,
→
x) = CHOICE (f2 δ)

in
max
{S-gen

(λ δ′.
if ∃ x. x ∈ set

→
x ∧ δ′ = δ|•x then HYB f1 f2 δ′

else 0) vs
→
x δ x ′ |

x ′ ∈ U(δ�vs)})
else `(δ)

else 0

It takes two functions f1 and f2 as arguments. The first function is an oracle that given a
transition system, returns a lifted dependency DAG of that system. The second function is an
oracle that returns a set of pairs, each of which has a strict subset of the state variables of the given
system, and the state space of the projection of the system on that subset of the state variables. We
note that proving the termination of HYB is not trivial. In order to guarantee termination, we add
the conditions that δ is finite as well as that all the lifted dependency DAGs computed by f1 and the
subsets of the domain of δ computed by f2 provide non trivial decompositions of δ, i.e. they are
strict subsets. Also, in order to guide HOL4 to extract the right termination conditions, we add the
redundant if-then-else statements in the functional parameters passed to N and S. After proving
termination, we are able to obtain the following characterisation that resembles Algorithm 5.

HOL4 Lemma 3 (The Hybrid Algorithm).

FINITE δ ∧ (∀ vs
→
x . (vs,

→
x) ∈ f2 δ ⇒ set

→
x = U(δ�vs)) ⇒

HYB f1 f2 δ =
if ∀ vs. vs ∈ set (f1 δ) ⇒ vs ⊂ D(δ) then

(let AVS = f1 δ in SUM (MAP N〈HYB〉 AVS))

§5.4 Formalising the Compositional Reachability Algorithm 81

else if
f2 δ 6= ∅ ∧ ∀ vs

→
x x. (vs,

→
x) ∈ f2 δ ∧ x ∈ set

→
x ⇒ δ|•x ⊂ δ

then
(let (vs,

→
x) = CHOICE (f2 δ) in max {S〈HYB〉(x ′) | x ′ ∈ U(δ�vs)})

else `(δ)

Lastly, proving its validity as an upper bound on the sublist diameter follows directly from
HOL4 Theorem 3 and HOL4 Theorem 4.

HOL4 Theorem 5.

` FINITE δ ∧
(∀ δ′.

dep-DAG δ′ (f1 δ′) ∧
∀ vs

→
x . (vs,

→
x) ∈ f2 δ′ ⇒ sspace-DAG δ′�vs

→
x) ⇒

`(δ) ≤ HYB f1 f2 δ

5.4 Formalising the Compositional Reachability Algorithm

In this section we review our formalisation of our algorithm to compute plans via planning for the
descriptive quotient. Precisely, we formalise Theorem 17, Theorem 18 and the validity of concate-
nating instantiations of the descriptive quotient’s plan after its goal is augmented. However, in our
approach we prove the validity of the algorithm after generalising it in two different ways. Firstly,
we prove its validity for a more general class of abstractions: abstractions that are isomorphic
to subproblems of the concrete problem, which are more general than the descriptive quotients.
Secondly, we prove that the algorithm works for planning problems whose state characterising
variables are of arbitrary types, and not necessarily Boolean. This shows that the algorithm has
potential application to numerical planning as well as verification of hybrid systems.

An important point to state is that as a result of the formalisation, we found some subtle but
non-trivial mistakes in our original algorithm and framework. We will point out those mistakes
within our description of our formalisation. We also found that to verify that algorithm, there
were other arguments that are easier to formalise than the ones we presented in our earlier proofs,
arguments that we shall elaborate on in the next sections.

We first review how we formalise the basic concepts related to planning problems. First we
formalise a planning problem as a record type in HOL4 as follows:

(α, β) planningProblem =
<| I : (α 7→ β);

δ : ((α 7→ β) × (α 7→ β) → bool);
A : (α 7→ β) |>

Note that this record type extends the sets of actions that we used in our treatment of upper-
bounding topological properties. In the above definition Π.I is the initial state, Π.δ is the set of
actions a problem has, and Π.A is the goal, which is a partial state. Note that this formalisation
of planning problems does not require that state characterising variables to be Boolean.

An action sequence is a plan for a planning problem if it satisfies the following predicate:

HOL4 Definition 15 (Plan).

Π solved_by
→
π ⇐⇒ →

π ∈ Π.δ∗ ∧ Π.A v ex(Π.I,
→
π)

82 Formalisation

In some cases we require the planning problem to be “valid”, which is defined as follows:

HOL4 Definition 16 (Planning Problem).

planning_problem Π ⇐⇒ Π.I ∈ U(Π.δ) ∧ D(Π.A) ⊆ D(Π)

Also we define the following union operation on planning problems and a lifted union opera-
tion for lists of planning problems.

HOL4 Definition 17 (Planning Problem Union).

(Π1 ∪ Π2) =
<|I := Π1.I] Π2.I; δ := Π1.δ ∪ Π2.δ; A := Π1.A] Π2.A|>⋃
Πl = FOLDR planning_prob_union Π∅ Πl

Π∅ is the empty problem defined as follows

Π∅ = <|I := x∅; δ := ∅; A := x∅|>

where x∅ denotes a state with an empty domain, i.e. a state that maps nothing to nothing.

The following theorems show that the semantics of the planning problem union operations are
as intended.

` planning_problem Π1 ∧ planning_problem Π2 ⇒
planning_problem (Π1 ∪ Π2)

` (∀Π. MEM Π Πl ⇒ planning_problem Π) ⇒
planning_problem (

⋃
Πl)

` D(Π1 ∪ Π2) = D(Π1) ∪ D(Π2)

5.4.1 Formalising Soundness of Sub-solution Concatenation (Theorem 17)

We now discuss our formalisation of Lemma 8 from page 60. Before we go into the details of our
formalisation, we would like to highlight that in the process of formalisation, we found a mistake in
the statement of that lemma as we formulated and published it our International Joint Conference
on Artificial Intelligence paper. In the original formulation, we left out the assumption that for
every problem Πi, the corresponding plan

→
π i needs to satisfy the condition sat-pre(N (Πi),

→
π i),

i.e. all the actions in
→
π i have to have their preconditions satisfied during the execution of

→
π i from

the needed assignments of Πi. Without having this assumption, concatenating the plans for the
different problems in the problem list does not necessarily satisfy all the goals for all the problems
in the list. This is because there may be some action in a plan

→
π i, whose conditions are not

satisfied by N (Πi), that gets activated in the concatenated plan, thus jeopardising the outcome of
the concatenated plan. Implications of missing this assumption in our original published treatment
propagated to the theorems that depend on Lemma 8 and eventually to the main algorithm. In some
cases this mistake could have led to the computation of buggy plans, i.e. plans that do not reach the
goals they are supposed to reach. Interestingly, this case never showed up in any of the thousands
of standard planning benchmarks on which we conducted our experiments. Bugs in such corner
cases cannot be afforded if the AI algorithm was to be deployed in a safety sensitive application,
and the existence of such bugs further strengthens the argument for using formal verification for
AI algorithms.

§5.4 Formalising the Compositional Reachability Algorithm 83

We now go to the details of the formalisation. To formalise the concept of needed assignments,
we took a different approach from the one we took in our pen and paper proof. We first define the
needed variables as follows, which are equivalent to D(N (Π)) in the original formulation, i.e. the
domain of the needed assignments.

HOL4 Definition 18. Needed Variables

ND(Π) =
{v |

v ∈ D(Π.I) ∧
((∃ p e. (p,e) ∈ Π.δ ∧ v ∈ D(p) ∧ p ‘ v = Π.I ‘ v) ∨

v ∈ D(Π.A) ∧ Π.I ‘ v = Π.A ‘ v)}

We then formalise needed assignments as follows:

HOL4 Definition 19 (Needed Assignments).

N (Π) = Π.I�ND(Π)

The following theorem shows that the definition of the needed assignments has the right se-
mantics. It effectively says that for a problem, a plan will work from any state x that provides the
needed assignments of that problem, even if x contradicts the initial state of the problem on the
assignments to some state variables. Note the assumption sat-pre (N (Π),

→
π): it guarantees that

the state x does not unintentionally activate actions that are not active when
→
π is executed from

Π.I.

HOL4 Lemma 4.

` planning_problem Π ∧ N (Π) v x ∧ sat-pre (N (Π),
→
π) ⇒

Π solved_by
→
π ⇒ Π.A v ex(x ,

→
π)

Based on the concept of needed assignments and needed variables, defining the concept of a
planning problem that “precedes” another planning problem is straight forward, as follows.

HOL4 Definition 20 (Preceding Problems).

Π1

�

Π2 ⇐⇒ Π1.A�ND(Π2) = N (Π2)�D(Π1) ∧ Π1.A�D(Π2) = Π2.A�D(Π1)

The following HOL4 lemmas show that our definition of the precede relation has the right
semantics. It guarantees that if a planning problem Π1 precedes another planning problem Π2 ,
then the a plan for Π1 always preserves the needed assignments for Π2 , and a plan for Π2 does not
invalidate a goal for Π1 . This is crucial to show that the concatenation of the plans of the problems
will solve the union of the two problems.

HOL4 Lemma 5.

` Π1

�

Π2 ∧ Π1.A v ex(x ,
→
π) ∧ →

π ∈ Π1 .δ
∗ ∧ N (Π2) v x ∧

planning_problem Π1 ⇒
N (Π2) v ex(x ,

→
π)

HOL4 Lemma 6.

` Π1

�

Π2 ∧ Π2.A v ex(x ,
→
π) ∧ →

π ∈ Π2 .δ
∗ ∧ planning_problem Π2 ∧

Π1.A v x ⇒
Π1.A v ex(x ,

→
π)

84 Formalisation

Another way the formalisation departs from our pen and paper proof, is in the way we specify
the situation of a list of planning problems which all precede each other in the order of the list. We
do that in the following recursive way.

HOL4 Definition 21 (List of Preceding Problems).

�

l (Π::Πl) ⇐⇒ (∀Π′. MEM Π′ Πl ⇒ Π

�

Π′) ∧ �

l Πl

�

l [] ⇐⇒ T

We are now ready to state our formalised statement of Lemma 8 from page 60, which states
sufficient conditions for the concatenation of sub-problem plans to solve the goals for each of the
sub-problems.

HOL4 Lemma 7.

` �

l Πl ⇒
∀ x.

(∀Π.
MEM Π Πl ⇒

planning_problem Π ∧ Π.I v x ∧ Π solved_by f Π ∧
sat-pre (N (Π),f Π)) ⇒

∀Π. MEM Π Πl ⇒ Π.A v ex(x ,FLAT (MAP f Πl))

Note that in the statement above f is a function that maps every planning problem to a plan
that solves it. A significant difference between the formalisation of this lemma and the pen and
paper treatment is the proof. An informal version of the proof that we formalised follows.

Proof. In the pen and paper proof we proceed by induction on the size of the list of problems, and
effectively add a new member to the end of list of problems, which is equivalent to induction on
the reverse of Πl . In the formalisation we proceed in the opposite direction, where the induction
adds a new planning problem as a head to the list of problems Πl . The base case is trivial. In
the step case we have the theorem for list of problems Πl , and we need to show that it applies to
Πl with the problem Π pre-pended to it. The key idea of the proof is to deal with

⋃
Πl as one

planning problem. Since Π precedes every problem in Πl , we have that Π precedes
⋃

Πl . From
this, the inductive hypothesis, HOL4 Lemma 4, HOL4 Lemma 5, and HOL4 Lemma 6, the result
follows.

The formalisation of Theorem 17 follows directly from HOL4 Lemma 7. However, we review
our formalisation of concepts necessary to state Theorem 17. First we formalise the concepts of a
subproblem and based on it the concept of coverage, whose formalisations are straightforward as
follows:

HOL4 Definition 22 (Sub-Problem).

Π1 ⊆ Π2 ⇐⇒ Π1.I v Π2.I ∧ Π1.δ ⊆ Π2.δ

HOL4 Definition 23. Covering Problems

covers Πl Π ⇐⇒
(∀ x.

x ∈ D(Π.A) ⇒
∃Π′. MEM Π′ Πl ∧ x ∈ D(Π′.A) ∧ Π.A ‘ x = Π′.A ‘ x) ∧

∀Π′. MEM Π′ Πl ⇒ Π′ ⊆ Π

§5.4 Formalising the Compositional Reachability Algorithm 85

During formalisation, we discovered a mistake in our definition of a subproblem: in the orig-
inal definition we omitted the requirement that Π1.I v Π2.I holds, and instead required that
D(Π1) ⊆ D(Π2) holds.

Secondly we formalise the function rem-condless as follows. This function removes the
actions whose preconditions are not satisfied during execution from a certain state

HOL4 Definition 24 (Remove Condition-less Actions).

rem-condless (x ,pfx_a,(p,e)::
→
π) =

if p v ex(x ,pfx_a) then rem-condless (x ,pfx_a ++ [(p,e)],
→
π)

else rem-condless (x ,pfx_a,
→
π)

rem-condless (x ,pfx_a,[]) = pfx_a

The following theorems show that our formalisation of that function has the desired properties,
where the preconditions of all the actions in the resulting action sequence are satisfied, and the
resulting action sequence produces the same execution outcome.

` sat-pre (x ,rem-condless (x ,[],
→
π))

` ex(x ,
→
π) = ex(x ,rem-condless (x ,[],

→
π))

Given those definitions, the following formalised statement of Theorem 17 follows directly
from HOL4 Lemma 7, and it formalises sufficient conditions for the concatenation of sub-problem
plans to solve the union of those sub-problems.

HOL4 Theorem 6.

` covers Πl Π ∧ �

l Πl ⇒
(∀Π. MEM Π Πl ⇒ planning_problem Π ∧ Π solved_by f Π) ⇒

Π solved_by
FLAT (MAP (λΠ′. rem-condless (N (Π′),[],f Π′)) Πl)

5.4.2 Formalising Instantiation

The most challenging part of formalising Theorem 18 and the augmentation algorithm is in captur-
ing the instantiation of states and building on top of the instantiation of actions, planning problems,
and action sequences. Because we formalise states as finite maps, the instantiation tLxM of a state
x corresponds to applying an image of the instantiantion t to the domain of the finite map, which
is why we denote the instantiation operation as a function image application. For example, for a
state {o1 7→ T, o2 7→ F} and an instantiation function t, the instantiation of that state using that
function is the state {t(o1) 7→ T,t(o2) 7→ F}. This is equivalent to composing the inverse of the
instantiation function with the state. The first step in formalising this is to define the inverse of a
function.

HOL4 Definition 25 (Function Inverse).

f −1 x = CHOICE {y | f y = x }

In order for the inverse of a function to behave as we desire, that function needs to be a
bijection, in which case the following theorems follow.

` BIJ f U(:α) U(:β) ⇒ f (f −1 x) = x

86 Formalisation

` BIJ f U(:α) U(:β) ⇒ f −1 (f x) = x

` BIJ f U(:α) U(:β) ⇒ f −1−1 = f

Note that this bijectivity condition holds for instantiations that are transversals of variable orbits
which we considered in Chapter 4. This is because the set of orbits forms a partition of the domain
of the planning problem, and transversals map every orbit to one of its members.

Based on this characterisation of an inverse function, the way we formalise state instantiation
in HOL4 is as follows:

HOL4 Definition 26 (State Instantiation).

tLx M = x f_o t−1

In HOL4 the term fm f_o f is the composition of a finite map fm with a function f . Based
on that, we define the instantiation operation as follows for an action, a factored system, a planning
problem and an action sequence.

HOL4 Definition 27 (Action Instantiation).

tL(p,e)M = (tLpM,tLeM)

HOL4 Definition 28 (System Instantiation).

tLδM = (λπ. tLπM)LδM

HOL4 Definition 29 (Planning Problem Instantiation).

tLΠM = Π with <|I := tLΠ.IM; δ := tLΠ.δM; A := tLΠ.AM|>

HOL4 Definition 30 (Action Sequence Instantiation).

tL
→
π M = MAP (λπ. tLπM)

→
π

Below are some HOL4 theorems that show some of the properties of instantiations, where
valid_inst f means that f is a bijection.

` valid_inst t ⇒ tLx �vsM = tLx M�tLvsM

` valid_inst t ⇒ ex(tLx M,tL
→
π M) = tLex(x ,

→
π)M

` valid_inst t ∧ planning_problem Π ⇒ planning_problem tLΠM

` valid_inst t ∧ Π solved_by
→
π ⇒ tLΠM solved_by tL

→
π M

` valid_inst t ⇒ ND(tLΠM) = tLND(Π)M

In addition to being bijections, an additional property needs to hold for a set of instantiations of
a planning problem in order for the algorithm of planning via the quotient to work. That property
is that two different instantiations from a set of instantiations ∆ should not map different variables
from the domain of the quotient to the same variable in their range. This is formally stated as
follows.

HOL4 Definition 31 (Valid Instantiation).

§5.4 Formalising the Compositional Reachability Algorithm 87

valid_instantiations ∆ vs ⇐⇒
∀t1 t2 v1 v2.
t1 ∈ ∆ ∧ t2 ∈ ∆ ∧ v1 ∈ vs ∧ v2 ∈ vs ∧ v1 6= v2 ⇒
t1 v1 6= t2 v2

This condition guarantees that different instantiations of the same state are consistent with
each other, i.e. a certain variable is mapped to the same value in all the instantiated states, which
is formally stated in the following theorem.

` valid_inst t1 ∧ valid_inst t2 ∧
valid_instantiations {t1; t2 } D(vs) ⇒

agree t1 LvsM t2 LvsM

Note that this condition also holds for instantiations that are transversals of variable orbits, again,
since the set of orbits forms a partition of the domain of the planning problem.

5.4.3 Formalising Theorem 18 and the Validity of Goal Augmentation

Now that we formalised instantiations, we describe how we formalised Theorem 18. Below are the
formalisations of the concepts of common variables between instantiations and the sustainability
relation between planning problems and sets of state variables.

HOL4 Definition 32 (Sustainable Variables).

sustainable_vars Π vs ⇐⇒ Π.I�vs = Π.A�vs

HOL4 Definition 33 (Common Variables).⋂
v ∆ vs =
{v | ∃t1 t2. t1 ∈ ∆ ∧ t2 ∈ ∆ ∧ t1 6= t2 ∧ v ∈ vs ∧ t1 v = t2 v }

The following HOL4 lemma summarises the main argument in the proof of Theorem 18, and
it shows that the semantics of the definitions above are as intended. It shows that if the needed
variables of the quotient are sustained then any two instantiations of that quotient precede each
other.

` valid_inst t1 ∧ valid_inst t2 ∧
valid_instantiations ∆ D(Π) ∧ planning_problem Π ∧ t1 ∈ ∆ ∧
t2 ∈ ∆ ∧ t1 6= t2 ∧ sustainable_vars Π (

⋂
v ∆ D(Π) ∩ ND(Π)) ⇒

t1 LΠM

�t2 LΠM

That lemma can then be generalised to a list of instantiations as follows, where similar sufficient
conditions on lists of planning problems that precede each other are formalised.

` ALL-DISTINCT ∆ ∧ (∀t. MEM t ∆ ⇒ valid_inst t) ∧
valid_instantiations (set ∆) D(Π) ∧ planning_problem Π ∧
sustainable_vars Π (

⋂
v (set ∆) D(Π) ∩ ND(Π)) ⇒

�

l (MAP (λt. tLΠM) ∆)

From this and from HOL4 Theorem 6, we can derive the following theorem. It is a formalisation
of Theorem 18, the main theorem that states sufficient soundness conditions for planning via the
descriptive quotient.

HOL4 Theorem 7.

88 Formalisation

` ALL-DISTINCT ∆ ∧
INJ (λt. tLΠ′M) (set ∆) U(:(α, β) planningProblem) ∧
(∀t. MEM t ∆ ⇒ valid_inst t) ∧
valid_instantiations (set ∆) D(Π′) ∧ planning_problem Π′ ∧
sustainable_vars Π′ (

⋂
v (set ∆) D(Π′) ∩ ND(Π′)) ∧

covers (MAP (λt. tLΠ′M) ∆) Π ∧ Π′ solved_by
→
π
′
⇒

Π solved_by
FLAT (MAP (λt. rem-condless (N (tLΠ′M),[],tL

→
π
′
M)) ∆)

The formalised version of Theorem 18 is more general in that it does not assume that the
quotient problem is necessarily a descriptive quotient obtained through symmetry analysis. It
rather assumes that the quotient can be instantiated into subproblems of the concrete planning
problem that cover its goals, i.e. the quotient is isomorphic to subproblems of the given planning
problem. It also should be clear that the concrete planning problem and the quotient are not
necessarily propositionally factored systems, i.e. the state variables are not necessarily Boolean
and are not required to have finite or countable domains. This makes the planning via descriptive
quotients a candidate approach to be used with hybrid systems.

The last step in our formalisation is to verify that instantiations of a plan for a quotient whose
goal is augmented, as per our approach described in Section 4.6, can be concatenated into a plan for
the concrete planning problem. The first step in doing so is to show that augmenting the quotient’s
goal with the common needed assignments guarantees that it sustains those assignments. This is
shown in the following theorem.

` let
Πq = Π′ with A := Π′.I�⋂

v (set ∆) D(Π′) ∩ ND(Π′)] Π′.A
in

sustainable_vars Πq (
⋂

v (set ∆) D(Πq) ∩ ND(Πq))

It is worth noting that HOL4 is able to prove the above goal entirely automatically.
Now that we proved that goal augmentation works as intended, the following theorem follows,

which verifies the validity of our approach of planning using the descriptive quotient. The main
idea in that theorem is that, since a planning problem with an augmented goal sustains the common
needed variables, as we show in the lemma above, then the same algorithm as in HOL4 Theorem 7
can always be used the augmented quotient problem.

` let
Πq = Π′ with A := Π′.I�⋂

v (set ∆) D(Π′) ∩ ND(Π′)] Π′.A
in

ALL-DISTINCT ∆ ∧ (∀t. MEM t ∆ ⇒ valid_inst t) ∧
planning_problem Π′ ⇒

INJ (λt. tLΠqM) (set ∆) U(:(α, β) planningProblem) ∧
valid_instantiations (set ∆) D(Πq) ∧
covers (MAP (λt. tLΠqM) ∆) Π ∧ Πq solved_by

→
π

q
⇒

Π solved_by
FLAT (MAP (λt. rem-condless (N (tLΠqM),[],tL

→
π

q
M)) ∆)

5.5 Concluding Remarks

Much of the previous work on formalised algorithms related to transition systems, like Esparza
et al. (2013), focus on algorithms that target model checking applications. Although the algorithms

§5.5 Concluding Remarks 89

that we introduce and formally verify here apply to propositionally factored transition systems in
their full generality, we focus more on AI planning applications. Thus, with this work, we believe
we have launched a fruitful inter-disciplinary collaboration between the fields of AI planning and
mechanised mathematics. From the interactive theorem-proving community’s point of view, it is
gratifying to be able to find and fix errors in the modern research literature. For example, the
insights which led us to develop the sublist diameter and the top-down algorithm followed from
attempting to formalise the results in Rintanen and Gretton (2013) . That effort helped us find a
bug in their algorithm, where they incorrectly theorise that the diameter can be compositionally
upper-bounded by projections’ diameters, if the projections are induced by a partition of state
variables whose members are closed under mutual dependency.

Also during formalisation, we found mistakes in our own algorithms that are subtle but non-
trivial. For instance, in our published version and implementation of the algorithm for planning
via the descriptive quotient, we missed an important step in the algorithm. That step is remov-
ing actions from the quotient’s plan whose preconditions are not satisfied, before the instantiation
and concatentation steps of the quotient’s plan, which can possibly produce an invalid plan. In-
terestingly, this error never showed up during experimentation, although we ran our algorithm on
thousands of diverse standard planning benchmarks. Although such errors can be practically rare,
they cannot be tolerated in safety critical applications, thus, their existence makes a strong case
for the utility of mechanical verification.

It is vital that we give AI researchers assurances that their algorithms, theory and systems are
correct. For AI planning systems to be deployed in safety critical applications and for autonomous
exploration of space, they must not only be efficient, and provably conservative in their resource
consumption, but also correct. The upper-bounding algorithms like the ones we formalise here
underpin fixed-horizon planning; indeed, they provide the fixed horizon past which an algorithm
need not search. If an autonomous vehicle exploring outer space implemented diameter-based
compositional bounding suggested by Rintanen and Gretton (2013) to do its plan-search, that
system could incorrectly conclude that no plan exists.

Another point we would like to raise is one concerning the difference between the formal
proofs and the informal proofs. We oftentimes found that some proofs were more intuitive and
accordingly easier to explain to deliver the gist of how a proof works. In contrast, we sometimes
found it very hard to formalise those proofs and found that substantially different approaches were
more natural and more fit for formalisation. An example of that is the proof of Lemma 8 and its
formalised equivalent HOL4 Lemma 7. We found that to deliver the argument, doing the induction
on the tail of the list is more natural and clearer, while it was substantially much easier to formalise
the proof by doing the induction on the head of the list.

Furthermore, our formalisation made it much easier to generalise some of our results and al-
gorithms from propositionally factored systems to more general systems, systems in which the
codomains of states are not necessarily Boolean, finite or even countable. This raises the possi-
bility of applying the algorithms that we developed to hybrid systems. Also, we would like to
note that for our formalisation we developed a large formalised library on factored transition sys-
tems. Since a lot of theory in that library applies to factored systems that are not propositionally
factored, it can be used for verifying algorithms on hybrid systems, for instance. In the case of
hybrid systems, an interesting challenge would be extending the theory we developed to be capa-
ble of representing actions whose preconditions and effects are functions in state variables, versus
assignments to state variables.

Our experience mechanising results in AI planning allows us to provide insights regarding the
scalability of formalising AI planning algorithms. To formalise the compositional algorithms we
developed a library of HOL4 proof scripts that is around 14k lines long, including comments.

90 Formalisation

Interestingly, the size of developed code does not necessarily scale linearly with the number of
algorithms that we formalised. The first algorithm that we formalised was Nsum, and to do so
we developed around 10k lines of proof script. That script was developed in approximately six
months. Our subsequent formalisation of Smax and HYB required an additional 2k lines of proof
scripts each. Each of those algorithms took around two and half weeks to formalise. This pro-
ductivity improvement follows because when we formalised Nsum, we developed the majority
of the needed formal background theory. That theory is leveraged in our formalisation of other
algorithms on factored transition systems.

We made a number of observations in our efforts that we believe provide insight into how
HOL4 can be improved. The feature of HOL4 that we would cite as the most positive, is the
ability to quickly modify existing tactics, or add new tactics, since the entire system is completely
implemented in SML. Also, automation tactics in general are reasonable. Nonetheless, we think
that other aspects of automation can still be improved. Tasks that can be automated which we
found cumbersome include: (i) searching for theorems in the library, (ii) the generation of ter-
mination conditions, (iii) the definition of relations, (iv) proving the uniqueness of relations, and
(v) deriving the function form of a relation. Another more general issue that we faced is the
absence of a mechanism akin to classes in Isabelle, which could have allowed us to reduce the
repetition of theorem hypotheses.

In terms of formally verifying AI planning algorithms, we have only scratched the surface
here. For instance, when a tight bound for a planning problem is known, one effective technique
for finding a plan is to reduce that problem to SAT (Rintanen, 2012). Proposed reductions are con-
structive, in the sense that a plan can be constructed in linear time from a satisfying assignment to
a formula. A key recent advance in the setting of planning-via-SAT has been the development of
compact SAT-representations of planning problems. Such representations facilitate more efficient
search (Rintanen, 2012; Robinson et al., 2009). In future work, we would like to verify the cor-
rectness of both the reductions to SAT, and the algorithms that subsequently construct plans from
a satisfying assignment.

Bibliography

Amir Abboud, Virginia Vassilevska Williams, and Joshua Wang. Approximation and fixed param-
eter subquadratic algorithms for radius and diameter in sparse graphs. In Proceedings of the
twenty-seventh annual ACM-SIAM symposium on Discrete Algorithms, pages 377–391. SIAM,
2016.

Mohammad Abdulaziz and Lawrence C Paulson. An Isabelle/HOL formalisation of Green’s theo-
rem. In International Conference on Interactive Theorem Proving, pages 3–19. Springer, 2016.

Donald Aingworth, Chandra Chekuri, Piotr Indyk, and Rajeev Motwani. Fast estimation of di-
ameter and shortest paths (without matrix multiplication). SIAM Journal on Computing, 28(4):
1167–1181, 1999.

Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. Journal of the ACM (JACM), 42(4):
844–856, 1995.

Noga Alon, Zvi Galil, and Oded Margalit. On the exponent of the all pairs shortest path problem.
Journal of Computer and System Sciences, 54(2):255–262, 1997.

Rajeev Alur, Robert K Brayton, Thomas A Henzinger, Shaz Qadeer, and Sriram K Rajamani.
Partial-order reduction in symbolic state space exploration. In International Conference on
Computer Aided Verification, pages 340–351. Springer, 1997.

Eyal Amir and Barbara Engelhardt. Factored planning. In IJCAI, volume 3, pages 929–935.
Citeseer, 2003.

Andreas Bauer, Peter Baumgartner, Martin Diller, and Michael Norrish. Tableaux for verifica-
tion of data-centric processes. In Automated Reasoning with Analytic Tableaux and Related
Methods, pages 28–43. Springer, 2013.

Jason Baumgartner, Andreas Kuehlmann, and Jacob Abraham. Property checking via structural
analysis. In Computer Aided Verification, pages 151–165. Springer, 2002.

Richard Bellman. On a routing problem. Quarterly of applied mathematics, pages 87–90, 1958.

Sergey Berezin, Sérgio Campos, and Edmund M Clarke. Compositional reasoning in model check-
ing. In Compositionality: The Significant Difference, pages 81–102. Springer, 1998.

Yves Bertot and Pierre Castéran. Interactive theorem proving and program development: Coq’Art:
the calculus of inductive constructions. springer, 2004.

Marc Bezem and Dimitri Hendriks. On the mechanization of the proof of Hessenberg’s theorem
in coherent logic. Journal of Automated Reasoning, 40(1):61–85, 2008.

Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Symbolic model check-
ing without BDDs. In TACAS, pages 193–207, 1999.

91

92 Bibliography

Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yunshan Zhu.
Bounded model checking. Advances in Computers, 58:117–148, 2003.

Andreas Björklund and Thore Husfeldt. Finding a path of superlogarithmic length. SIAM Journal
on Computing, 32(6):1395–1402, 2003.

Andreas Björklund, Thore Husfeldt, and Sanjeev Khanna. Approximating longest directed paths
and cycles. In International Colloquium on Automata, Languages, and Programming, pages
222–233. Springer, 2004.

Jasmin Christian Blanchette and Tobias Nipkow. Nitpick: A counterexample generator for higher-
order logic based on a relational model finder. In Interactive Theorem Proving, First Interna-
tional Conference, ITP 2010, pages 131–146, 2010. doi: 10.1007/978-3-642-14052-5_11.

Jasmin Christian Blanchette, Mathias Fleury, and Christoph Weidenbach. A verified SAT solver
framework with learn, forget, restart, and incrementality. In International Joint Conference on
Automated Reasoning, pages 25–44. Springer, 2016.

Avrim L Blum and Merrick L Furst. Fast planning through planning graph analysis. Artificial
intelligence, 90(1):281–300, 1997.

Blai Bonet and Hector Geffner. Planning as heuristic search. Artificial Intelligence, 129(1-2):
5–33, 2001.

R. I. Brafman and C. Domshlak. Structure and complexity in planning with unary operators.
Journal of Artificial Intelligence Research, 18:315–349, 2003.

Ronen I Brafman and Carmel Domshlak. Factored planning: How, when, and when not. In AAAI,
volume 6, pages 809–814, 2006.

Cynthia A. Brown, Larry Finkelstein, and Paul Walton Purdom Jr. Backtrack searching in the
presence of symmetry. Nord. J. Comput., 3(3):203–219, 1996.

Daniel Bundala, Joël Ouaknine, and James Worrell. On the magnitude of completeness thresholds
in bounded model checking. In Proceedings of the 2012 27th Annual IEEE/ACM Symposium
on Logic in Computer Science, pages 155–164. IEEE Computer Society, 2012.

T. Bylander. The computational complexity of propositional STRIPS planning. Artificial Intelli-
gence, 69(1-2):165–204, 1994.

Michael L. Case, Hari Mony, Jason Baumgartner, and Robert Kanzelman. Enhanced verification
by temporal decomposition. In FMCAD 2009, 15-18 November 2009, Austin, Texas, USA, pages
17–24, 2009.

Timothy M Chan. More algorithms for all-pairs shortest paths in weighted graphs. SIAM Journal
on Computing, 39(5):2075–2089, 2010.

Shiri Chechik, Daniel H Larkin, Liam Roditty, Grant Schoenebeck, Robert E Tarjan, and Vir-
ginia Vassilevska Williams. Better approximation algorithms for the graph diameter. In Pro-
ceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1041–1052. Society for Industrial and Applied Mathematics, 2014.

Yixin Chen and Guohui Yao. Completeness and optimality preserving reduction for planning. In
IJCAI, pages 1659–1664, 2009.

93

Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. Progress on the state
explosion problem in model checking. In Informatics, pages 176–194. Springer, 2001.

Edmund Clarke, Daniel Kroening, Joël Ouaknine, and Ofer Strichman. Completeness and com-
plexity of bounded model checking. In International Workshop on Verification, Model Check-
ing, and Abstract Interpretation, pages 85–96. Springer, 2004.

Edmund M Clarke, Orna Grumberg, and David E Long. Model checking and abstraction. ACM
transactions on Programming Languages and Systems (TOPLAS), 16(5):1512–1542, 1994.

Edmund M Clarke, Reinhard Enders, Thomas Filkorn, and Somesh Jha. Exploiting symmetry in
temporal logic model checking. Formal methods in system design, 9(1-2):77–104, 1996.

Edmund M Clarke, E Allen Emerson, Somesh Jha, and A Prasad Sistla. Symmetry reductions in
model checking. In Computer Aided Verification, pages 147–158. Springer, 1998.

Edmund M Clarke, E Allen Emerson, and Joseph Sifakis. Turing lecture: model checking–
algorithmic verification and debugging. Communications of the ACM, 52(11):74–84, 2009.

Robert L Constable, Paul B Jackson, Pavel Naumov, and Juan C Uribe. Constructively formalizing
automata theory. In Proof, language, and interaction, pages 213–238, 2000.

James Crawford, Matthew Ginsberg, Eugene Luks, and Amitabha Roy. Symmetry-breaking pred-
icates for search problems. KR, 96:148–159, 1996.

Peter Dankelmann. The diameter of directed graphs. Journal of Combinatorial Theory, Series B,
94(1):183–186, 2005.

Peter Dankelmann and Michael Dorfling. Diameter and maximum degree in Eulerian digraphs.
Discrete Mathematics, 339(4):1355–1361, 2016.

Peter Dankelmann and Lutz Volkmann. The diameter of almost Eulerian digraphs. the electronic
journal of combinatorics, 17(1):R157, 2010.

Leonardo De Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver. In Proc.
TACAS’08/ETAPS’08, pages 337–340, 2008.

Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische mathematik,
1(1):269–271, 1959.

Christian Doczkal, Jan-Oliver Kaiser, and Gert Smolka. A constructive theory of regular languages
in Coq. In International Conference on Certified Programs and Proofs, pages 82–97. Springer,
2013.

Carmel Domshlak, Michael Katz, and Alexander Shleyfman. Enhanced symmetry breaking in
cost-optimal planning as forward search. In ICAPS, 2012.

Carmel Domshlak, Michael Katz, and Alexander Shleyfman. Symmetry breaking: Satisficing
planning and landmark heuristics. In ICAPS, 2013.

Jean-François Dufourd. An intuitionistic proof of a discrete form of the Jordan Curve Theorem
formalized in Coq with combinatorial hypermaps. Journal of Automated Reasoning, 43(1):
19–51, 2009.

94 Bibliography

E Allen Emerson and A Prasad Sistla. Symmetry and model checking. Formal methods in system
design, 9(1):105–131, 1996.

Paul Erdős, Janos Pach, Richard Pollack, and Zsolt Tuza. Radius, diameter, and minimum degree.
Journal of Combinatorial Theory, Series B, 47(1):73–79, 1989.

Javier Esparza, Peter Lammich, René Neumann, Tobias Nipkow, Alexander Schimpf, and Jan-
Georg Smaus. A fully verified executable LTL model checker. In International Conference on
Computer Aided Verification, pages 463–478. Springer, 2013.

M Eugene. Permutation groups and polynomial-time computation. In Groups and Computation:
Workshop on Groups and Computation, October 7-10, 1991, volume 11, page 139. American
Mathematical Soc., 1993.

Richard E Fikes and Nils J Nilsson. Strips: A new approach to the application of theorem proving
to problem solving. Artificial intelligence, 2(3-4):189–208, 1971.

Emmanuel Filiot, Naiyong Jin, and Jean-François Raskin. Antichains and compositional algo-
rithms for LTL synthesis. Formal Methods in System Design, 39(3):261–296, 2011.

Maria Fox and Derek Long. The detection and exploitation of symmetry in planning problems.
In Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, IJCAI
99, Stockholm, Sweden, July 31 - August 6, 1999. 2 Volumes, 1450 pages, pages 956–961, 1999.

Maria Fox and Derek Long. Extending the exploitation of symmetries in planning. In Proceedings
of the Sixth International Conference on Artificial Intelligence Planning Systems, April 23-27,
2002, Toulouse, France, pages 83–91, 2002.

Michael L Fredman. New bounds on the complexity of the shortest path problem. SIAM Journal
on Computing, 5(1):83–89, 1976.

Michael L Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved network
optimization algorithms. Journal of the ACM (JACM), 34(3):596–615, 1987.

Ruben A Gamboa. A formalization of powerlist algebra in ACL2. Journal of Automated Reason-
ing, 43(2):139–172, 2009.

Rob Gerth, Ruurd Kuiper, Doron Peled, and Wojciech Penczek. A partial order approach to
branching time logic model checking. In Theory of Computing and Systems, 1995. Proceedings.,
Third Israel Symposium on the, pages 130–139. IEEE, 1995.

Patrice Godefroid. Using partial orders to improve automatic verification methods. In Interna-
tional Conference on Computer Aided Verification, pages 176–185. Springer, 1990.

Georges Gonthier. Formal proof–the four-color theorem. Notices of the AMS, 55(11):1382–1393,
2008.

Michael JC Gordon and Tom F Melham. Introduction to HOL: a theorem proving environment for
higher order logic. Cambridge University Press, 1993.

Emmanuel Guere and Rachid Alami. One action is enough to plan. In Proceedings of the Seven-
teenth International Joint Conference on Artificial Intelligence, IJCAI 2001, Seattle, Washing-
ton, USA, August 4-10, 2001, pages 439–444, 2001.

95

Thomas C Hales, John Harrison, Sean McLaughlin, Tobias Nipkow, Steven Obua, and Roland
Zumkeller. A revision of the proof of the Kepler conjecture. In The Kepler Conjecture, pages
341–376. Springer, 2011.

John Harrison. Formalizing basic complex analysis. From Insight to Proof: Festschrift in Honour
of Andrzej Trybulec. Studies in Logic, Grammar and Rhetoric, 10(23):151–165, 2007.

Malte Helmert. The Fast Downward planning system. Journal of Artificial Intelligence Research,
26:191–246, 2006a.

Malte Helmert, Patrik Haslum, Jörg Hoffmann, and Raz Nissim. Merge-and-shrink abstraction: A
method for generating lower bounds in factored state spaces. Journal of the ACM (JACM), 61
(3):16, 2014.

Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research, 14:253–302, 2001.

Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press, 2006. ISBN
978-0-262-10114-1.

Mathieu Jaume. A full formalization of SLD-resolution in the calculus of inductive constructions.
Journal of Automated Reasoning, 23(3):347–371, 1999.

David Joslin and Amitabha Roy. Exploiting symmetry in lifted CSPs. In Proceedings of the
Fourteenth National Conference on Artificial Intelligence and Ninth Innovative Applications
of Artificial Intelligence Conference, AAAI 97, IAAI 97, July 27-31, 1997, Providence, Rhode
Island., pages 197–202, 1997.

Fairouz Kamareddine and Haiyan Qiao. Formalizing strong normalization proofs of explicit sub-
stitution calculi in ALF. Journal of Automated Reasoning, 30(1):59–98, 2003.

H. A. Kautz and B. Selman. Planning as satisfiability. In ECAI, pages 359–363, 1992.

Elena Kelareva, Olivier Buffet, Jinbo Huang, and Sylvie Thiébaux. Factored planning using de-
composition trees. In IJCAI, pages 1942–1947, 2007.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin,
Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, et al. seL4: Formal
verification of an OS kernel. In Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles, pages 207–220. ACM, 2009.

C. A. Knoblock. Automatically generating abstractions for planning. Artificial Intelligence, 68
(2):243–302, 1994.

AV Knyazev. Diameters of pseudosymmetric graphs. Mathematical Notes, 41(6):473–482, 1987.

Daniel Kroening. Computing over-approximations with bounded model checking. Electronic
Notes in Theoretical Computer Science, 144(1):79–92, 2006.

Daniel Kroening and Ofer Strichman. Efficient computation of recurrence diameters. In VMCAI,
pages 298–309, 2003.

Daniel Kroening, Joël Ouaknine, Ofer Strichman, Thomas Wahl, and James Worrell. Linear com-
pleteness thresholds for bounded model checking. In Computer Aided Verification, pages 557–
572. Springer, 2011.

96 Bibliography

Panagiotis Manolios and Daron Vroon. Ordinal arithmetic: Algorithms and mechanization. Jour-
nal of Automated Reasoning, 34(4):387–423, 2005.

Filip Marić. Formalization and implementation of modern SAT solvers. Journal of Automated
Reasoning, 43(1), 2009.

Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram, Manuela Veloso,
Daniel Weld, and David Wilkins. PDDL: The Planning Domain Definition Language. Technical
report, CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vision and Control,
1998.

Drew V McDermott. A heuristic estimator for means-ends analysis in planning. In AIPS, vol-
ume 96, pages 142–149, 1996.

Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, {II}. Journal of Symbolic
Computation, 60(0):94 – 112, 2014. ISSN 0747-7171. doi: http://dx.doi.org/10.1016/j.jsc.
2013.09.003. URL http://www.sciencedirect.com/science/article/pii/
S0747717113001193.

James McKinna and Robert Pollack. Some lambda calculus and type theory formalized. Journal
of Automated Reasoning, 23(3):373–409, 1999.

Kenneth L McMillan. Symbolic model checking. In Symbolic Model Checking, pages 25–60.
Springer, 1993.

Ian Miguel. Symmetry-breaking in planning: Schematic constraints. In Proceedings of the CP’01
Workshop on Symmetry in Constraints, pages 17–24, 2001.

John W Moon et al. On the diameter of a graph. The Michigan Mathematical Journal, 12(3):
349–351, 1965.

Tobias Nipkow. Verifying a hotel key card system. In K. Barkaoui, A. Cavalcanti, and A. Cerone,
editors, Theoretical Aspects of Computing (ICTAC 2006), volume 4281 of Lecture Notes in
Computer Science. Springer, 2006. Invited paper.

Tobias Nipkow and Lawrence C Paulson. Proof pearl: Defining functions over finite sets. In In-
ternational Conference on Theorem Proving in Higher Order Logics, pages 385–396. Springer,
2005.

Panos M Pardalos and Athanasios Migdalas. A note on the complexity of longest path problems
related to graph coloring. Applied mathematics letters, 17(1):13–15, 2004.

Lawrence C Paulson. Isabelle: A generic theorem prover, volume 828. Springer, 1994.

Lawrence C Paulson. A formalisation of finite automata using hereditarily finite sets. In Interna-
tional Conference on Automated Deduction, pages 231–245. Springer, 2015.

Nir Pochter, Aviv Zohar, and Jeffrey S Rosenschein. Exploiting problem symmetries in state-based
planners. In AAAI, 2011.

Aldo Porco, Alejandro Machado, and Blai Bonet. Automatic reductions from PH into STRIPS or
how to generate short problems with very long solutions. In ICAPS, 2013.

Silvia Richter and Matthias Westphal. The LAMA planner: Guiding cost-based anytime planning
with landmarks. Journal of Artificial Intelligence Research, 39(1):127–177, 2010.

http://www.sciencedirect.com/science/article/pii/S0747717113001193
http://www.sciencedirect.com/science/article/pii/S0747717113001193

97

Jussi Rintanen. Symmetry reduction for SAT representations of transition systems. In ICAPS,
pages 32–41, 2003.

Jussi Rintanen. Planning as satisfiability: Heuristics. Artificial Intelligence, 193:45–86, 2012.

Jussi Rintanen and Charles Orgill Gretton. Computing upper bounds on lengths of transition
sequences. In International Joint Conference on Artificial Intelligence, 2013.

Nathan Robinson, Charles Gretton, Duc Nghia Pham, and Abdul Sattar. SAT-based parallel plan-
ning using a split representation of actions. In ICAPS, 2009.

Liam Roditty and Virginia Vassilevska Williams. Fast approximation algorithms for the diameter
and radius of sparse graphs. In Proceedings of the forty-fifth annual ACM symposium on Theory
of computing, pages 515–524. ACM, 2013.

Alexander Schimpf, Stephan Merz, and Jan-Georg Smaus. Construction of Büchi automata for
LTL model checking verified in Isabelle/HOL. In International Conference on Theorem Proving
in Higher Order Logics, pages 424–439. Springer, 2009.

Jendrik Seipp, Florian Pommerening, Silvan Sievers, Martin Wehrle, Chris Fawcett, and Yusra
Alkhazraji. Fast Downward Aidos. International Planning Competition, 2014.

Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. Checking safety properties using induction
and a SAT-solver. In Formal Methods in Computer-Aided Design, Third International Confer-
ence, FMCAD 2000, Austin, Texas, USA, November 1-3, 2000, Proceedings, pages 108–125,
2000. doi: 10.1007/3-540-40922-X_8.

Alexander Shleyfman, Michael Katz, Malte Helmert, Silvan Sievers, and Martin Wehrle. Heuris-
tics and symmetries in classical planning. In AAAI, 2015.

Silvan Sievers, Martin Wehrle, Malte Helmert, Alexander Shleyfman, and Michael Katz. Fac-
tored symmetries for merge-and-shrink abstractions. In Proc. 29th National Conf. on Artificial
Intelligence. AAAI Press, 2015.

A Prasad Sistla and Edmund M Clarke. The complexity of propositional linear temporal logics.
Journal of the ACM (JACM), 32(3):733–749, 1985.

Konrad Slind and Michael Norrish. A brief overview of HOL4. In Theorem Proving in Higher
Order Logics, volume 5170 of LNCS, pages 28–32. Springer, 2008.

José Soares. Maximum diameter of regular digraphs. Journal of Graph Theory, 16(5):437–450,
1992.

Christoph Sprenger. A verified model checker for the modal µ-calculus in Coq. In International
Conference on Tools and Algorithms for the Construction and Analysis of Systems, pages 167–
183. Springer, 1998.

Paul Taylor. The fixed point property in synthetic domain theory. In Logic in Computer Science,
1991. LICS’91., Proceedings of Sixth Annual IEEE Symposium on, pages 152–160. IEEE, 1991.

Mikkel Thorup. Integer priority queues with decrease key in constant time and the single source
shortest paths problem. In Proceedings of the thirty-fifth annual ACM symposium on Theory of
computing, pages 149–158. ACM, 2003.

98 Bibliography

Thomas Wahl and Alastair F. Donaldson. Replication and abstraction: Symmetry in automated
formal verification. Symmetry, 2(2):799–847, 2010. doi: 10.3390/sym2020799. URL http:
//dx.doi.org/10.3390/sym2020799.

Brian C. Williams and P. Pandurang Nayak. A reactive planner for a model-based executive. In
International Joint Conference on Artificial Intelligence, pages 1178–1185. Morgan Kaufmann
Publishers, 1997.

Chunhan Wu, Xingyuan Zhang, and Christian Urban. A formalisation of the Myhill-Nerode the-
orem based on regular expressions (proof pearl). In International Conference on Interactive
Theorem Proving, pages 341–356. Springer, 2011.

You Xu, Yixin Chen, Qiang Lu, and Ruoyun Huang. Theory and algorithms for partial order based
reduction in planning. arXiv preprint arXiv:1106.5427, 2011.

Raphael Yuster. Computing the diameter polynomially faster than APSP. arXiv preprint
arXiv:1011.6181, 2010.

http://dx.doi.org/10.3390/sym2020799
http://dx.doi.org/10.3390/sym2020799

	Declaration
	Acknowledgement
	Abstract
	Introduction
	Contributions
	Publications

	Thesis Structure

	Basic Concepts and Notations
	Compositional Upper-Bounding of Topological Properties
	Related Work
	Results
	Compositional Upper-Bounding: Negative Results
	Projection and Variable Dependency
	Diameter Cannot be Compositionally Upper-Bounded
	Recurrence Diameter Cannot be Compositionally Bounded
	Discussion

	The Traversal Diameter
	Tightness of the Traversal Diameter
	Computing the Traversal Diameter

	Using Structural Knowledge for Better Bounds: Acyclic Dependency
	Upper-Bounding the Diameter using Abstractions' Recurrence Diameters

	The Sublist Diameter
	Compositionally Bounding the Sublist Diameter Under Acyclic Dependency
	The Sublist Diameter as a Compositional Upper Bound on the Diameter

	Exploiting State Space Acyclicity
	Hotel Key Protocol
	State Space Acyclicity Compositional Bounding Constructs

	A Practical Algorithm for Upper-Bounding
	Hybrid Algorithm

	Empirical Evaluations
	Quality of Hyb Bounds
	Comparison of Hyb and Nsum
	Planning with Hyb

	Conclusion and Open Questions

	Compositional Computation of Reachability in the Presence of Repetitive Symmetry
	Related Work
	Results
	Planning Problems and Additional Notation
	Computing Problem Symmetries
	Computing the Set of Instantiations
	Finding Instantiations: Practice
	Finding Instantiations: Theory

	Concrete Plan from Quotient Plan
	Experimental Results
	Conclusions and Future Work

	Formalisation
	Related Work
	Factored Transition Systems in HOL4
	Topological Properties
	Abstraction

	Formalising Compositional Upper-Bounding Algorithms
	Compositional Bounding in the General Case
	Compositional Bounds in the Presence of Acyclicity

	Formalising the Compositional Reachability Algorithm
	Formalising Soundness of Sub-solution Concatenation (Theorem 17)
	Formalising Instantiation
	Formalising Theorem 18 and the Validity of Goal Augmentation

	Concluding Remarks

	Bibliography

